
N A S A  

u7 
0 
L n  

PC 
u 

I 

4 

4 
z 

CA 

C O N T R A C T O R  
R E P O R T  

LOAN COPY: RETURN TO 

KIRTLAND AFB, N MEX 
AFWL (WLIL-2) 

STUDIES I N  PRESTRESSED AND 
SEGMENTED BRITTLE STRUCTURES 

by Rubh L, Barnett and Pad  C. Hermunn 

Prepared by 
IIT RESEARCH INSTITUTE 
Chicago, Ill. 

for 

NATIONAL  AERONAUTICS  AND SPACE ADMINISTRATION a i  0 WASHINGTON, D. C. 0 JUNE 1966 



NASA CR-505 

STUDIES IN PRESTRESSED AND SEGMENTED 

BRITTLE  STRUCTURES 

By Ralph  L.  Barnett  and  Paul  C.  Hermann 

Distribution of this   report  is provided  in  the interest of 
information  exchange.  Responsibility for the  contents 
resides  in  the  author  or  organization  that  prepared it. 

Prepared  under  Contract No. NASr-65(04) by 
IIT RESEARCH  INSTITUTE 

Chic  ago, Ill. 

fo r  

NATIONAL AERONAUTICS AND  SPACE ADMINISTRATION 

For  sale by the  Clearinghouse for Federal  Scientific and Technical Information 
Springfield,  Virginia 22151 - Price $4.00 





. 

CONTENTS 

Page 

SUMMARY .................................................. 
I . INTRODUCTION ....................................... 

A . Summary of   Previous  Effor ts  .................... 
1 . Transverse cracking phenomenon ............. 
2 . Load-de f l ec t ion   cha rac t e r i s t i c s   o f   p re -  

3 . St reng th   o f   p re s t r e s sed   mono l i th i c   b r i t t l e  
s t r e s s e d  segmented beams ................. 
beams .................................... 

B . Summary of Current Accomplishments ............. 
C . Acknowledgments ................................ 

I1 . PRESTRESSED BEAMS .................................. 
A . Nonlinear  Bending  Theory ....................... 

1 . Theory  of p e r f e c t  segmented beams .......... 

a . Arb i t r a ry   c ros s   s ec t ion  ................ 
b . Rectangular   cross   sect ion .............. 
a . Design  of  experiments .................. 

2 . Equivalence of t h e  two models .............. 
3 . Genera l   re la t ionships   for   mul t ip le   t endons  . 

4 . Ver i f i ca t ion  of theory ..................... 
b . Test desc r ip t ion  ....................... 
c . Comparison  of  theory  and  experiment .... 

5 . Segmented beams wi th   nonf l a t   i n t e r f aces  . . D .  

B . I -Beam or  Box B e a m  with  Mult iple  Tendons ....... 
C . L i m i t  Analysis ................................. 
D . Prestressed  Monolithic Beams ................... 
A . Buckling - P e r f e c t l y   F l a t   I n t e r f a c e s  ........... 
B . Nonflat   Interface  Problem ...................... 

1 . Area and length   sca l ing  .................... 
2 . Test r e s u l t s  and i n t e r p r e t a t i o n  ............ 

a . Description  of  Experiments ............. 
b . In t e rp re t a t ion   o f  results .............. 

C . Backbone Column ................................ 
I V  . PRESTRESSED PLATES ................................. 

A . Segmented P l a t e s  ............................... 
B . Monolithic Beams ............................... 

I11 . SEGMENTED COLUMNS .................................. 

3 

3 

3 
5 
6 
6 
6 
8 

11 
11 
15 
16  
16  
18 
22 
28 
30 
39 
4 3  
5 3  
5 3  
5 9  
59  
60 
60 
64 
67 
76 
76 
86 

iii 

L 



CONTENTS (CONT ID) 

Page 

v . PRELIMINARY  INVESTIGATIONS OF PRESTRESSED  SHELLS .... 90 
A . Cylindrical  Shell ............................... 90 
B . Ogive  Shell ..................................... 92 

APPENDIX A . I-BEAM  COMPUTER  PROGRAM ...................... 95 
APPENDIX B - SELECTION OF MODELING  MATERIAL ............... 121 
REFERENCES ................................................ 130 

iv 



ILLUSTRATIONS 

F  igur  e  Page 
1-a Prestressed  Segmented  Bending  Behavior ........... 4 
1-b  Prestressed  Monolithic  Bending  Behavior .......... 4 
2 Mathematical  Models  for  Bending  Response ......... 7 
3 Geometry  of  Arbitrary  Cross  Section .............. 1 2  
4 Compression  Load-Deflection  Diagram  for  a  18.75 

5 Tungsten  Carbide  Beam  Experimental  Setup ......... 19 

7 Details  of  Beam  End  Configurations ............... 21 

inch  Segmented  Tungsten  Carbide  Column ......... 17 

6 Tungsten  Carbide  Beam  Configurations ............. 2 0  

8 Preliminary  Terminal  Couple . End  Rotation 
Diagrams  for  a  Prestressed  Segmented  WC  Beam ... 2 3  

for  a  Prestressed  Segmented  WC  Beam ............ 24 

Prestressed  Segmented  WC  Beam .................. 25 

9 Final  Terminal  Couple . End  Rotation  Diagrams 

10 Tendon  Stress . Terminal  Couple . Diagram  for  a 

11 Geometry  of  Cracked I-Beam  Cross  Section ......... 3 1  
1 2  
1 3  

14 

15 
1 6  
17 
1 8  
19 
20 
21 
22 
23 
2 4  
25 

Beam  and  Tendon  Geometries ....................... 
Load-Deflection  Diagrams  and  Crack  Penetration 
Diagrams  for  I-Beams  with  Zero  Stiffness  Tendons 

Load-Deflection  Diagrams  and  Crack  Penetration 
Diagrams  for  I-Beams  with  Elastic  Tendons ...... 

Tendon  Force  and  Moment vs . Terminal  Couple ...... 
Alumina  Hollow  Circular  Prestressed  Segmented  Beam 
Segmented  Alumina  Beam  Tests ..................... 
Limit  Analysis  of  Prestressed  Segmented Aj 203 Beam 
Typical  Failure  Modes  of  Alumina  Beam  Segments ... 
Schematic  of  Four-Point  Bending  Test ............. 
Prestressed  Monolithic  Plaster  Beam .............. 
Failure  Probabilities  for  Unprestressed  Beams .... 
Probability  of  Failure  for  Prestressed  Beams ..... 
Eccentrically  Loaded  Segmented  Column ............ 
Segmented  Glass  Columns ( 2 0  segment. 2 inch 
diameter) ...................................... 

3 4  

35 

37 
38 
4 0  
41 
42 
44 
46 
47 
49 
52 
5 4  

62  
26  Load-Def  lection  Diagrams  for  Segmented  Glass 

27 Tangent  Modulus  Distribution  Plotted  on  Normal 
columns  (10  Segments. 2 inch  diameter) ......... 6 3  

Probability  Paper .............................. 65 

V 

L 



STUDIES I N  PRESTRESSED 
AND SEGMENTED BRITTLE STRUCTURES 

by Ralph L. Barnet t  and Paul C.  Hermann 

A nonlinear   theory  descr ibing  the  response  of   rectangular   pre-  
s t r e s s e d  segmented beams i s  ver i f ied   exper imenta l ly .  The applica- 
b i l i t y  of the  theory is  extended  to beam-columns  and t o  I-beams with 
mult idle   tendons.  The methods  of l i m i t  ana lys i s   a re   used   to   p re-  
d i c t   t he   u l t ima te   l oad   ca r ry ing   capac i ty   o f   p re s t r e s sed  and seg- 
mented beams and p l a t e s .  A s t a t i s t i c a l   h y p o t h e s i s  i s  developed 
and ve r i f i ed   fo r   s ca l ing   t he   behav io r   o f   d i f f e ren t   he igh t   nonf l a t  
segmented  columns. F i n a l l y ,   t h e   f e a s i b i l i t y   o f   p r e s t r e s s i n g   c y l i n -  
d r i c a l  and ogive   she l l s  i s  inves t iga t ed  and evidence i s  obtained 
which  demonstrates   the  pract ical i ty  of  overwinding as a p res t r e s s ing  
technique. 

I. INTRODUCTION 

To r ea l i ze   t he   cons ide rab le   po ten t i a l  of ceramics and cermets 
in   high  performance  s t ructures  i t  i s  necessary  to  circumvent  the 
problems  which a t t e n d   b r i t t l e n e s s  and small s e c t i o n   s i z e .  One 
approach t o   t h i s  problem u t i l i ze s   t he   t echn iques  of p re s t r e s s ing  
and segmenting, and indeed ,   the   p r inc ipa l   ob jec t ive  of t h i s  program 
i s  to   s tudy   these   t echniques   for   the i r   poss ib le  employment in   aero-  
space appl icat ions.   Specif ical ly ,our   goal   has   been  the  development  
of an ana ly t i ca l   capab i l i t y   fo r   p red ic t ing   t he   behav io r  of pres t ressed  
monolithic and segmented b r i t t l e   s t r u c t u r e s  from a knowledge  of the 
behavior   o f   the i r  component elements. 

I n   t h e   f i r s t  phase of the  program, three  fundamental  problems 
w e r e  cons idered   ( re f .  1)". The f i r s t  of these   dea l t   wi th   the   deve l -  
opment of t r a n s v e r s e   t e n s i l e   s t r e s s   i n  a segmented  column  under 
axial   compressive  loading.  The second,  involved  the  prediction of 
the  nonlinear  response  of a pres t ressed  segmented beam. 
* 

References   l i s ted  a t  the  end of t e x t .  
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The l a s t  concerned i tself   with  the  benefits  which accrue from pre- 
stressing a monolithic  bri t t le element. We shal l   br ief ly  review 
the  highlights of t h i s   f i r s t   e f f o r t .  

A. Sumnary of Previous e f for t s  

1. Transverse,cracking phenomenon. - Cracking in  a direc- 
tion  transverse t o  a uniaxial compressive  load was f i r s t  recog- 
nized by F. R.  Shanley t o  be a major deterrent t o  the  application 
of prestressing t o  segmented members. In 1957, the  authors con- 
ducted a study of minimum weight deflection  design  for  prestressed 
segmented beams in  which the  roughness of the segment interfaces 
played a predominant role. Based on th i s  background, i t  was hypoth- 
esized  that  the  interface roughness causes  transverse  cracking. 
To support t h i s  view the  foliowing  evidence was established. 

The slope of the  compressive stress-strain  dia- 
gram of a segmented  column increases  with  in- 
creasing  stress. This i s  caused by the f a c t  
that  the  contact  area  increases  with  axial load 
and hence the  stiffness  correspondingly  increases. 

Column strength  increases  with  increasing  flatness. 

Specimens increase  in compressive strength  with 
decreasing  cross  sectional  area. 

Internal  transverse  crack  lenses can be observed 
in   glass  columns (2x4x1/2 inches). 

Photoelastic and two-dimensional e l a s t i c i ty  
results  indicate  that  an uneven load d i s t r i b u -  
t ion on a segment w i l l  cause  internal  tensile 
s t resses   in   direct ions  paral le l  t o  the  interfaces. 

Triaxial compressive tests  indicate a very sub- 
s tant ia l   increase  in   axial   s t rength when a 
lateral   prestress i s  imposed. 

2 



2. Load-deflection  characteristics of prestressed segmented 
beams. - Two qui te   different  mathematical models were developed 
t o  describe  the  nonlinear  response of prestressed segmented beams 
with  perfectly  f lat   interfaces.  The s ta t i s t ica l   na ture  of the 
nonflat  interface problem was identified and i t s  implication t o  
both bending and  column behavior was described.  Load-deflection 
diagrams were experimentally  obtained  for segmented glass beams 
using  several  levels of prestress. The general  characteristics of 
these diagrams are  i l lustrated  in  Figure  1-a where we can identify 
a l inear and a nonlinear  region. The rough interfaces of the  glass 
segments precluded a deterministic  prediction of the  linear  portion 
of the  curve; however, when our  "perfect  interface" models  were 
modified t o  reflect  the  proper  linear  behavior,  the  nonlinear 
region was predicted  with remarkable precision. 

3 .  Strength of prestressed  monolithic  brittle beams. - Apply- 
ing  Weibull's statist ical   fracture  theory,  it was possible t o  
theoretically  establish  for simple beams a relationship among 
prestress  level,   reliabil i ty,   loading, member geometry, and 
material p rope r t i e s .  A specific example was treated  in which the 
prestress  results  in a 25,-fold increase  in  ultimate  capacity over 
a conventional beam of equal  weight and r e l i ab i l i t y .  The general 
characterist ics of the  load-deflection diagrams for such members 
are  i l lustrated  in  Figure 1-b where we observe  the  influence of 
both  deterministic and s t a t i s t i c a l  phenomena. 

B .  Summary of Current Accomplishments 

The bending theory  previously  formulated  for  prestressed seg- 
mented beams w i t h  perfectly  f lat   interfaces was verified by care- 
ful ly  performed experiments on a segmented tungsten  carbide beam. 
The segment interfaces  for this  rectangular member were no more 
than one half  lightband  out of f l a t .  Having placed  the  theory on 
a solid  foundation, a computer program was writ ten t o  extend our 
analysis  capability t o  I-beams and  box  beams w i t h  multiple tendon 
arrangements. The applicabili ty of l i m i t  analysis  theory  for  pre- 
dicting  the  ultimate  load  carrying  capacity of prestressed segmented 
beams  was demonstrated by t e s t s  conducted on a 16-foot  tubular 
alumina beam w i t h  a thin  wall  circular  cross  section. 

3 
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Monolithic  Hydrostone  plaster beams were used  to  accumulate statis- 
t i ca l  d a t a  on the " i n i t i a l   f r a c t u r e ' '   s t r e n g t h   o f  beam-columns. 
Weibull 's  s tatist ical  f rac ture   theory   p rovided  a sa t i s f ac to ry   des -  
c r i p t i o n   o f  the measured  behavior. 

S t a r t i n g  w i t h  the bending   theory   for   per fec t ly  f l a t  segmented 
beams, it w a s  possible   to   descr ibe  the  behavior   of   perfect   segmented 
beam-columns under eccentric axial loads.  The buckling  load  of a 
p e r f e c t  segmented  column w a s  shown t o   b e   e q u a l   t o  the classical 
Euler  load. A s ta t is t ical  theory w a s  proposed  for  scaling  the,com- 
p res s ive   s t r e s s - s t r a in   d i ag rams   o f   d i f f e ren t   he igh t  segmented  col- 
umns wi th   nonf l a t   i n t e r f aces .  Data obta ined   for   var ious   s ize   seg-  
mented g l a s s  columns  supported  our  hypothesis  that the s t i f f n e s s  
d i s t r i b u t i o n  is  normal  and scales as the   "d i s t r ibu t ion   o f   t he  mean". 
A b r i e f   i n v e s t i g a t i o n   i n t o   t h e   b e h a v i o r  of nonprismatic  segmented 
columns ind ica t ed   t ha t   c r acks  are no t   necessa r i ly   a r r e s t ed  a t  segment 
in te r faces .   Fur thermore ,   the   resu l t s   o f  tests on shor t   p las te r   back-  
bone  columns sugges t   tha t   na ture  may prefer   the   p r i smat ic  column. 

The theory  of l i m i t  ana lys i s  w a s  app l i ed   t o   p re s t r e s sed   s eg -  
mented c i r c u l a r   p l a t e s  and the   r e su l t i ng   p red ic t ions   ag reed   c lose ly  
w i t h  r e su l t s   ob ta ined  from  preliminary  experiments  performed on 
Hydros tone   p las te r   d i sks .   Theore t ica l ly ,   th i s   theory   p rovides  a 
lower  bound t o   t h e   s t r e n g t h   o f   m o n o l i t h i c   p r e s t r e s s e d   b r i t t l e   p l a t e s  
and tests conducted on such  e lements   support   th is   predict ion.  

F ina l ly ,   p re l imina ry   s tud ie s  were conducted  with  prestressed 
c y l i n d r i c a l  and og ive .   she l l s .  The technique of overwinding w a s  
shown t o   b e  an   e f f ec t ive  method for   applying a p r e s t r e s s i n g   f o r c e  
over  an  extended area. The f irst  experiments  with  segmented  plaster 
og ive   she l l s  seemed to   ind ica te   tha t   the   in te r face   roughness   p roblem 
may be  of c r i t i ca l  concern. 

C. Acknowledgments 
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t h e   f i e l d  of s ta t is t ical  f r ac tu re   t heo ry ,  L. A. Bertram i n   t h e   a r e a  
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11. PRESTRESSED  BEAMS 

A number  of  fundamental  investigations  involving  pre- 
stressed  monolithic  and  segmented  beams  are  described  in 
this  section.  Specifically,  the  theory  of  perfect  segmented 
beams  (absolutely  flat  interfaces)  presented  in  our  first 
report  is  verified  experimentally.  This  theory  is  applied  to 
prismatic  I-beams  or  box  beams  with  multiple  elastic  tendons 
and  a  computer  program  is  presented  for  establishing  the  load- 
deflection  diagrams  for  such  members.  The  possibility  of  using 
limit  analysis  methods  to  establish  the  load-carrying  capacity 
of  segmented  beams  is  briefly  exploited  with  the  aid  of  a 16- 
foot  aluminum  oxide  segmented  circular  tube.  Finally,  the  ulti- 
mate  capacities  of  prestressed  monolithic  hydrostone  plaster 
beams  are  measured  and  compared  to  predictions  derived  from  a 
statistical  formulation  of  the  problem  that  uses a beam-column 
analysis  together  with  the  Weibull  distribution  function. 

A. Nonlinear  Bending  Theory 
1.  Theory  of  perfect  segmented  beams. - In our  first  report 

two  different  mathematical  models  were  developed  to  account  for 
the  segment  separation  which  occurs  during  the  bending  of  a  seg- 
mented  beam  (ref. 1). The  first  of  these,  the  incremental  model 
shown  in  Figure  2a  considers  the  beam  at  some  instant  during  the 
loading  process.  At  this  instant  the  beam  is  in  equilibrium  with 
the  applied  moment M(x), and  in  general,  cracks  will  have  pene- 
trated  into  the  beam  section  for  some  distance  along  the  segment 
interfaces.  The  relationship  between  crack  penetration  and  the 
bending  moment  at  a  station  along  the  beam  is  established in  a 
straightforward  manner  from  moment  equilibrium.  If an additional 
infinitesimal  moment 6M(x)  is  added  to  this  beam,  the  resulting 
infinitesimal  response can  be calculated  as  the  linear  response 
of  the  uncracked  beam  section.  The  total  live  load  deflection  is 
then  found  by  summing  all  such  infinitesimal  responses  which  occur 
between M(x) = 0 and  M(x) = M(x) final. I 
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In   the  second model, the  equi l ibr ium model shown in   F igure  2b, 
t h e  beam i s  cons idered   in  i t s  f ina l   l oad ing  state. The portion  of 
t h e  beam which i s  uncracked i s  considered t o  be an e l a s t i c  beam 
under  the  external  loading M(x) and the   in te rna l   loading   caused  
by the   p res t ress ing .   S ince   the   def lec t ion  of an e l a s t i c  beam can 
be  uniquely  determined  for   every  loading,   the   def lect ion of t he  
e n t i r e  beam can  be  viewed  as  the  deflection  of  the  uncracked  portion. 

Since  the  general   demonstration of the  equivalence of these 
models was not  at tempted  in  our  previous  study, w e  s h a l l   d e a l   w i t h  
t h i s  problem  here. 

2 .  Equivalence  of  the t w o  models. - In   t he   pos tu l a t ion  of  both 
the  "incremental" and "equilibrium" models, i t  was assumed t h a t :  
(1) the  segment ma te r i a l  i s  l i n e a r l y   e l a s t i c  up t o  i t s  u l t imate  
compressive  strength,  (2)  t he   i n t e r f aces   a r e   abso lu t e ly   f l a t ,  (3)  the  
tendons  are  constrained t o  def lect   wi th   the  segments   (e l iminat ing any 
beam-column ac t ion ) ,  ( 4 )  the  number of segments i s  i n f i n i t e ,  and 
(5)  t h e   r e s u l t a n t   p r e s t r e s s i n g   f o r c e  i s  located  within  the  sect ion 
kern  (precluding  the  existence of tens i le   bending   s t resses  and hence, 
cracking  under  zero  external  load).  Also,  f o r  the  sake of sim- 
p l ic i ty ,   the   equiva lence  of the  t w o  models w i l l  be  demonstrated 
for   the   case  of rec tangular   c ross   sec t ion  and z e r o   s t i f f n e s s  
tendons. 

Both  models a re   ident ica l   as   long   as   the  beam i s  completely 
uncracked.  In  the  cracked  region,  the  incremental  method leads 
t o  the  fol lowing  expression  for   the  def lect ion 

where  the  applied  bending moment d i s t r i b u t i o n ,  M(x), has  been 
represented by Pg(x), P being  the maximum applied  bending moment, 
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and  where A, i s  the   c racking   def lec t ion ,  PC i s  the  cracking 
moment, and 

S sC 

and  where S and S, are   respect ively  uncracked and cracked  por- 
t i ons  of the  beam and are   func t ions  of P.  In  the  cracked  region, 
the  equi l ibr ium model leads  to   fol lowing  expression 

A=IE dx +I  
S sC 

where T i s  t h e   r e s u l t i n g  moment ac t ing  on a c ross   sec t ion .  

The f a c t   t h a t   t h e s e  two  models a r e   i n d e n t i c a l  w i l l  be  demon- 
s t r a t e d  by showing t h a t  

dAk 
?IF dA = T F  

Without loss of genera l i ty ,   t emporar i ly  assume that   S(P)  i s  the  
i n t e r v a l  0 t o  a(P) and t h a t  Sc(P) i s  the   i n t e rva l   a (P )  
t o  L.  

Then for  Equation ( 3 )  

9 



Thus 

and s i n c e   a t  x = a(P) ,  IC. = I ,  we have 

L 

ai? da = f ( p ) f i  $$ dx + / E z (L) dx 
0 a (PI 

o r  more general ly  

For  rec tangular   c ross   sec t ion  we have 

I = r  bd3 

T = Pg(x) - Fe i n  S 

T = [F(e”$) - Pg(x ) ]   i n  Sc 
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Thus,  using  Equation ( 7 ), 

i n  S,: a? d (T) IC = g(x> 
I C  

Inser t ing  Equat ion ( 8 )  into  Equat ion ( 6 )  w e  have  completed the 
proof , i. e. 

3 .  General   re la t ionships   for   mult iple   tendons.  - 
a. Arbi t ra ry   c ross   sec t ion :  The most  genera l   re la t ionships  

hold ing   for  any c r o s s   s e c t i o n a l  geometry  and/or any number’ of elas- 
t i c  tendons, w i l l  now be   descr ibed .   I f  Fi i s  the   fo rce   i n   t he  i t h  

tendon  located et f rom  the  uncracked  neutral   axis ,   Figure 3 , 
and M i s  the   appl ied  moment, t hen   t he   r e su l t an t  moment ac t ing  
upon the c ross   s ec t ion  i s  

n 
T = M - C  F i Q i  

i-1 

where 
~ ~ = e ~ + f - q + f i  

and  where n i s  t h e   t o t a l  number of  tendons. 

Define n 
F = C  Fi 

i= 1 

and 
C Fo ei 1 

e =  i= 1 
FO 

(10) 

(13) 

using  Equations (ll), (12) , and (13) , Equation (10) may be written as 

11 



A : Cracked  Centroid 
B : Uncrocked Centroid 
C : i th Tendon 

Figure 3 Geometry of Arbitrary Cross Section 



n 

i-1 
T = M  - F ( e  + f - q + x )  - c F~ (ei-e> 

I f  we fu r the r   de f ine  

n 

Then the   expres s ion   fo r   t he   r e su l t an t  moment becomes 

T = M - F ( e + f - 4 + x ) - M T  (16) 

A s  they  have  been  defined, e represents   the   e f fec t ive   eccen-  
t r i c i t y  of t h e   i n i t i a l   t o t a l   p r e s t r e s s  Fo and MT represents  
t h e   r e s u l t a n t  moment due t o  the   e f fec t ive   bending   s t i f fness  of 
the  tendons. We note   tha t  MT = 0 when F = Fo and a l s o   t h a t  

l e n t  t o  a s ing le   e l a s t i c   t endon) .  
= 0 for   the  case when a l l   t h e  tendons  have  the same ei  (equiva- 

In order t o  determine  the  crack  penetration  f  we use  the 
f a c t   t h a t   t h e   s t r e s s  i s  equal t o  z e r o   a t   t h e  top  of the  crack.  

Combining Equations  (16)  and (17)  y i e lds  

where 
- 

I = I ( f ) ,  x = y ( f )  and A = A(f) .  

In  general   (except  for  the  case of rec tangular   c ross   sec t ion) ,  
Equation (18) cannot  be  solved  explicit ly  for  f  . In  the I-beam 
computer program i t  is convenient t o  def ine  W = (M-%)/F, t abu la t e  
W vs  f ,and  use  the  table t o  accomplish  inversion  and thus obta in  
f = .f(W). 

The expressions  for   def lect ion  and s l o p e  a r e  s i m p l y  

13  



L eL =I EI TrnL dx 

0 
L 

EI T"R dx 

0 

where the   v i r tua l  moments a re  
X 

m = ( 1 - c )  A x ,  f o r  O < X < X ,  
A " 

m = -  
R L  

X 

Now 
FoeL 

eo - - eLo - eRo - - q - - 

where Io is the  uncracked moment of i n e r t i a .  

The equations  for  determining  the  tendon  forces  are now, for  
the ith tendon 

(22) 

where it  has  been assumed tha t   a l l   the   t endons  have area At and 
modulus E t .  There  are n  such  relationships,  a l l  coupled  expl ic i t ly  
by the F-Fo term and impl ic i t ly  by the  other terms, t o  be  solved 
simultaneously. However, due t o  t h e   f a c t   t h a t   a l l  the tendons 
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have  the  same  At E,, these n equations  may  be  added  and 
solved  for F - Fo (although  transcendentally): 

L 
At Et 0 

where 
n 

Q =  2 Qi 
i=l 

Having  used  Equation (23) to  determine F - Fo,  the  individual 
tendon  forces  may  be  found  directly  from  Equation ( 2 2 ) .  

b. Rectangular  cross  section:  Several of the  expres- 
sions  that  were  derived  in  the  previous  section  simplify  for 
the  special  case  of  rectangular  cross  section. In this  case, 
taking dtotal = d and  taking b to  be  the  width,  we  have  the 
following: 

- 
x =  d-  f 

7" 

A = b(d-f) 

I =  b(:;f)3 

When  these  relationships  are  substituted  into  Equations ( 1 6 )  
and (17) we find  that  the  uncracked  portion  of  the  beam, S , 
corresponds  to  the  condition M - %= F(e+d/6)  and  the  cracked 
portion,  to  the  condition M - %=F(e+d/6). Furthermore 
it  is  determined  that 

sc , 

in S: F = 0 
T = M - F e - %  
A = A, = bd 
I = Io = bd / 1 2  3 
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and in  

Se: f = d - 6 ( ~ )  T 

T = +  [ F ( e + T )  d + %  - M ]  

A = 6 b (p) T 

'3 

I = 18 b (F) T 3  

4.  Verification  of  theory.  - 
a. Design  of  experiments: Of the  various  assumptions 

en te r ing   i n to   t he   de f l ec t ion   ana lys i s   o f   s egmen ted  beains, t h e  
most d i f f i c u l t   t o   r e a l i z e   p h y s i c a l l y  i s  t h a t   t h e  segmented i n t e r -  
f a c e s   b e   p e r f e c t l y   f l a t .  The g l a s s  beam used in   our   p rev ious  
s tudy  did  not   approach  this   condi t ion  and,   consequent ly ,  i t  could 
no t  be  used to   ver i fy   our   p roposed   theory .   In   the   p resent   inves t i -  
ga t ion  w e  were fo r tuna te   t o   ob ta in  a set of 100 tungsten  carbide 
gage   b locks   wi th   in te r faces   tha t  were no more than   one-ha l f   l igh t  
band o u t   o f   f l a t .  As shown in   F igu re  4,  the  compression  load- 
def lect ion  diagram  for  a 18.75-inch column of  1-inch x 2-inch x 
l l4- inch  blocks i s  l i n e a r  down to   ve ry  low loads  and  has a s lope  
equa l   t o   t ha t   o f  a monol i th ic   tungs ten   carb ide   bar ,   tha t  i s ,  t he  
modulus o f   e l a s t i c i t y  i s  about 92 x 10 p s i .  6 

The se lec t ion   of   ex t remely   f la t   b locks  was t h e   f i r s t   c o n s i d -  
eration  in  the  design  of  our  experimental   program. To minimize  the 
inf luence  of   the small range  of   nonl inear i ty   in   the  compression 
load-deflection  diagram a t  low loads,  a h igh   p re s t r e s s ing  level 
(7,000  psi)  w a s  chosen  for   the  tungsten  carbide beam.  Our previous 
work on glass  never  exceeded  the 1500 p s i  level. Fur ther ,   to   p re-  
c l u d e   t h e   p o s s i b i l i t y   t h a t  one o r  several segments exert a dispro-  
po r t iona te   i n f luence  on t h e   o v e r a l l  beam behavior,  a terminal  cou- 
p l e -end   ro t a t ion   r e l a t ionsh ip  was se l ec t ed   fo r   t he   r e sponse  com- 
parisons.  
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b. T e s t  descr ip t ion :  , The expe r imen ta l   s e tup   fo r   t e s t ing  
the  prestressed  and  segmented WC beam is  i l l u s t r a t e d  i n  Figure 5. 
I n   o r d e r   t o   a p p l y  terminal coup les   t o  the WC beam, i t  was neces- 
s a r y   t o   u t i l i z e  s tee l  extensions a t  the  ends  of   the  beam. Thus, 
by  employing  four  point  loading  (all   points  located on the steel 
ends) a uniform  bending moment d i s t r i b u t i o n  w a s  produced i n   t h e  
beam. 

The t rue   ( t angen t )  end r o t a t i o n s  were not  measured.  Instead 
a secant   approximation  to   the  end  rotat ions w a s  obtained by meas- 
ur ing   the  re la t ive def lec t ion   of  a po in t  1 .06  inches from the  as- 
sumed end  of  the beam. In   o rder   to   measure   these   def lec t ions ,  
t ransducers  (DCDT'S) were suspended  from  the beam and  located  on 
a freely  swinging  rack,   Figure 5. The purpose  of  the  rack was t o  
automatical ly   compensate   for   any  r igrd body r o t a t i o n s   t h e  beam 
might  experience. The beam was loaded  such that  i t  bent  concave 
downwards and  thus  produced  extensims  for   the DCDT's  t o  measure. 
The experimental   setup w a s  ca l ib ra t ed   u s ing  a monolithic s tee l  
beam. 

P a i r s  of s t r a in   gages  were a t tached   to   each  of the  tendons 
to   e l imina te   bending   s t ra ins .  The assembly  of  the steel ends  and 
the  tendons was ca l ib ra t ed   i n   t ens ion   t o   ve r i fy   t he   accu racy   o f  
the  tendon  s t ra in   gages.  Tendon s t r a i n  gage  readings were a l s o  
recorded  during  the  bending tes t s  fo r   co r re l a t ion   w i th   ou r  e las t ic  
tendon  theory. 

Two s l i g h t l y   d i f f e r e n t  beam conf igura t ions  were used   to  ob- 
t a i n   d a t a .  Details of   these two conf igura t ions  are p resen ted   i n  
Figures 6 and 7. Configuration  no. 2 i s  t h e   b e t t e r  one  from the  
poin t   o f  view of the  theory  due t o  i ts  s impl i c i ty .  However, it 
has   t he   s ign i f i can t  drawback t h a t   t h e  amount of   preload  that   could 
be  generated by t i gh ten ing   t he   nu t s  on the tendons i s  l imi t ed  by 
the   r e l a t ive ly   poor   t h reads   t ha t  were c u t  on the  tendons.  Conse- 
quent ly ,   for  a l l  the  higher   preload levels, r e s o r t  had t o  be made 
to   conf igura t ion   no . .  1 which  generated  the  preload by extending 
the   j ack  screws. 
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Figure 5 Tungsten Carbide  Beam  Experimental Setup 
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Figure 6 Tungsten  Carbide Beam Configurations 
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Preliminary  bending tests were conducted  using  configuration 
no. 1. Pre load   leve ls   o f  5, 8, 11 and 14 k ips  were selected  which 
were in   the   monol i th ic   s t i f fness   range   accord ing   to   F igure  4 f o r  
t h e  column test .  The tests were run i n  the  sequence 14, 11, 8, 5, 
5, 8, 11 and 14 without ever br inging   the   p re load   to   zero .  The 
r e s u l t s   o f   t h e s e  tests  are p resen ted   i n   F igu re  8. 

Two f inal   terminal   couple-end  rotat ion  diagrams were de te r -  
mined f o r   t h e  WC beam where   except iona l   a t ten t ion  was devoted  to  
t h e   t e s t i n g   d e t a i l s .   I n   e a c h   t e s t ,   t h e   p r e l o a d  w a s  g radual ly   in -  
creased from z e r o   t o   t h e   d e s i r e d   l e v e l  and many load  precycles  
were a p p l i e d   t o   t h e  beam to   comple t e ly   s t ab i l i ze  the system. The 
f i r s t  tes t  w a s  conducted  with  configuration  no, 1 and a 14 k ip  
preload. The preload  in   the  second tes t  w a s  4 k ips  which  enabled 
us  to   use  the  configurat ion  no.  2 and  avoid  the  complications  in- 
troduced by t h e   j a c k  screws. The r e su l t s   o f   t hese  tes ts  a r e  p r e -  
sen ted   in   F igures  9 and 10. 

c .  Comparison  of  theory and experiment: The theory,  
wi th  which the  experiments w i l l  be  compared, i s  i n  the  form  of a 
computer  program  which was developed  under  the f i r s t  phase of t h i s  
c o n t r a c t   ( r e f .  1). I n   o r d e r   t o   t a k e   i n t o   a c c o u n t   t h e   e f f e c t  of 
mu l t ip l e   e l a s t i c   t endons  and a l s o   t o  a t t e m p t  t o  compensate f o r   t h e  
s t r u c t u r a l   c o m p l i c a t i o n s   ( e s p e c i a l l y   i n   c o n f i g u r a t i o n   n o .  1) t h a t  
were introduced  between  the  end  of  the WC beam and  tendons,  the 
o r i g i n a l  computer  program was s igni f icant ly   modi f ied .  

Reca l l ing   the   e las t ic   t endon  equat ion   for   the   case   o f   mul t ip le  
tendons, w e  have 

mL where 8 = J - dx 
0 E 1  

and  where t h e   i n t e r v a l  (0,L)  r ep resen t s   t he  assumed length  of  
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the WC beam. In  order  to account for   the  s teel  ends and ( in  
configuration no. 1) the  jack screws i n  Equation (22) , the end 
rotation should be expressed  as 

e = K1 x d x + K 2  E 1  ( M - F e - q ) + K 3  (r) T (29) 

F -  
E and the beam compression term, Fo JL , should be modi- 

n 

fied t o  U 

where 
T 

%C 
K1 - 

- 
Assumed Length 

These correction terms and factors were derived wi th  the 
following  assumptions: (1) M(x) = constant; (2)  the  steel  ends 
have the same width and depth  as  the WC beam  and are   inf ini te ly  
segmented so that   their   area and moment of i ne r t i a  depend upon 
the  loading  in  the same  manner  assumed for  the WC beam;  and (3 )  
that  the  jack screws act  simply as two force members.  The sub- 
scr ipts  ST and J S  refer  t o  the  s teei  ends and the  jack screws 
respectively, 2w i s  the  vertical  distance between jack screws and 
, toJS  i s  the  extended  length of the  jack screws. 
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TABLE I 

LENGTHS  OF JACK SCREW  CORRESPONDING  TO  THE 
VARIOUS  PRESTRESS  LEVELS 

In configuration  no. 1, LST = 2.64 inch, w = .75 inch, 

AJ S 
no. 2, LST = 1.44 inch  and  Lwc = 21.0 inch.  Also,  in  both 
configurations  EST = EJS = 30 x 10 ksi, and  the  assumed 
length = 18.75 inch.  Insertion  of  these  values  into  Equations 
( 3 1 )  yields  Table 11. 

= .0227 sq. in.,  and kc = 20.0 inch. In configuration 

3 

TABLE I1 
VARIOUS  CONSTANTS  USED  IN T'HE ROTATION  COMPUTATIONS 

FOR THE  WC  BEAM 

~ 

14 1 20/18.75  36  44  21  88 
11 1 20118.75 29 44 16 88  

8 1 20118.75 2 1  44 12   88  
5 1 20118.75 13  44 7 88 
4 2 21 /18 .75  0 24 0 4 8  

As  mentioned  previously,  the  experiments  yielded  average 
(of  both  ends)  secant  end  rotations  corresponding  to  vertical 
deflection  measurements  taken  at  stations 1.06 inches  apart 
at  both  ends of the  beam.  Thus,  the  computer  program  was  ad- 
justed  to  compute  the  same  secant  end  rotation. 

Figure 8 illustrates  the  comparison of the  theory  and  the 
preliminary  experiments. It is  observed  that  generally,  the 
higher  the  preload,  the  better  the  agreement.  There  are a number 
of reasons  why  this  is  expected;  higher  preloads  provide a 
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t ighter  system with  greater  contact  area between segments, 
the  influence of the low stress  nonlinearity i s  suppressed, 
and the  relative  errors  in  preload  determination  are  reduced. 
It should be noted that  a rough analysis of the  jack screws 
indicated  that  they  tend t o  open up in  the  nonlinear  ranges 
for  the  cases Fo = 5 and 8 kips. 

The comparison of the  theory and the  f inal  experiments 
i s  i l l u s t r a t ed   i n  Figures 9 and 10. The agreement i s  much 
bet ter  than in  the  case of the  preliminary  experiments, both 
in  the  l inear and i n  the  nonlinear  ranges.  This i s  due t o  the 
extra  care used i n  performing  the f ina l  experiments and pos- 
s ibly t o  the  fact  that  the  jack screws were eliminated  in  the 
case Fo = 4 kips. The jack screws behaved as  predicted  in  the 
14 kip  case. 

5. Segmented  beams wi th  nonflat  interfaces. - When the 
segment interfaces  are  not  flat,  the  contact  area between any 
two segments may vary from almost full   contact t o  almost no 
contact. Furthermore, the  actual  contact  area cannot be pre- 
dicted f o r  particular segments since it varies randomly  from 
interface t o  interface. However,  when a l l  the  interfaces have 
been drawn from the same population, which usually happens when 
the same manufacturing  technique i s  used for  al l   the  blocks,  we 
can predict  the behavior of groups of segments in  a s t a t i s t i c a l  
sense. The compression t e s t ,  fo r  example, furnishes a measure 
of the  average or  effective  contact  area  at  every level of com- 
pression. For a given segmented  column the  effective  area  is 
computed by mul t ip ly ing  i t s  nominal area by the  ra t io  of i t s  
tangent  stiffness t o  the  equivalent  monolithic  stiffness. 

The s ta t is t ical   nature  of the  interface  contact  gives  rise 
t o  a number of important  implications.  First, a description of 
the compressive s t ress-s t ra in  diagram w i l l  be s t a t i s t i c a l  and 
w i l l  depend on both  the column area and the  length.  This prob- 
lem w i l l  be studied more thoroughly in  Section 111. Second, 
the moment  of inertia,   l ike  the  area,  w i l l  be  random w i t h  a 
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lower bound equal   to   zero   and  an upper bound e q u a l   t o   t h e   f u l l  
moment of inertia,  It follows that beam behavior w i l l  be s ta t is-  
t i ca l  i n   n a t u r e  and t h a t   t h e   v a r i a b i l i t y   e x p e r i e n c e d  w i l l  depend 
on the  length  and area of   the  beam, t h e  number of  segments,  and 
on the  loading.  

Because t h e  effective s t r e s s - s t r a in   cu rve   o f  a segmented 
column i s  area and  length  dependent, i t  i s  clear tha t   an   equiva len t  
nonl inear  material cannot  be  defined  which i s  usefu l   for   response  
ca lcu la t ions .   For  example, i n  a segmented beam under   su f f i c i en t ly  
high  loads,   the  nominaltquncracked" area diminishes   cont inual ly  
as the   load  i s  increased.   Consequent ly ,   the   s t i f fness  of t he   s ec t ion  
tends   to   increase  as a r e s u l t   o f   i n c r e a s i n g   a x i a l  stress and  de- 
creasing  nominal area; i t  tends  to   decrease  because  of  a reduced 
moment o f   i n e r t i a .  The theory  of  perfect   segmented beams accounts 
o n l y   f o r   v a r i a t i o n s   i n   t h e  moment of   iner t ia . ,An  exac t   so lu t ion  

for   the  response w i l l  r equ i r e ,   i n   add i t ion ,   t ha t  w e  descr ibe   the  
bending  stiffness  of  any  "uncracked" area subjec ted   to  a l i n e a r  
s t r a i n   f i e l d   t h a t  varies from zero a t  one  end t o  Some a r b i t r a r y  
maximum value a t  the   o ther .  It  does  not   appear   that   an  exact  bend- 
ing   s t i f fnes s   r e l a t ionsh ip   can   be   de r ived  from  column tes t s .  The 
desired  re la t ionship  can  be  obtained from terminal  couple-end 
r o t a t i o n  tes t s ;  however, the  authors  doubt  whether  the  end  result  
j u s t i f i e s   t h e   e f f o r t   i n v o l v e d .  

An approximate  description  of a load-deflection  diagram  can 
be  obtained  through a s l igh t   modi f ica t ion   of   the   per fec t   in te r face  
t h e o r y .   I f   t h e  modulus  of e l a s t i c i t y  of t h e  segment material enter- 
ing   i n to   t he   t heo ry  i s  replaced by the  tangent  modulus  of t he  beam 
a s s o c i a t e d   w i t h   t h e   i n i t i a l   p r e s t r e s s  level, the p e r f e c t   i n t e r f a c e  
theory w i l l  p red ic t   the   average   load   def lec t ion   d iagram.   In   our  
f i r s t   r e p o r t  we demonstrated  that   th is   procedure  predicted  the non- 
l inear  behavior  of  segmented beams  when t h e   i n i t i a l   s t r a i g h t   l i n e  
port ion  of   the  curve w a s  matched t o   t h e   d a t a .  The necess i ty   o f  
matching up the i n i t i a l   s l o p e   r a t h e r  than i n f e r r i n g  it from the 
tangent modulus taken from the   a s soc ia t ed  column tests s t r i k e s  a t  
the   core   o f   the  s t a t i s t i ca l  problem. The tangent modulus p red ic t ion  
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descr ibes   only  the  average  behavior  of a group of segmented beams 
and not  the  response  of a s i n g l e  member. 

To use the  suggested  approximate  technique  for   predict ing beam 
response, we  r e q u i r e  a descr ip t ion   of   the   compress ive   s t ress -s t ra in  
curve   for   the   nominal   c ross -sec t iona l  area of t h e  beam. There i s  
eve ry   r eason   t o   be l i eve   t ha t   t he  s ta t i s t ica l  desc r ip t ion  of a 
s i n g l e   t y p i c a l   s i z e  column w i l l  enable  one t o   d e s c r i b e  any o the r  
column o f   d i f f e ren t  area and length.  This  problem i s  s t u d i e d   i n  
Sect ion 111. 

As a f ina l   observa t ion   concern ing   nonf la t   in te r faces ,  we re- 
c a l l  from  our last  r e p o r t   t h a t   t h e   i n i t i a l   p o r t i o n   o f   t h e   c e n t r a l  
load-central   def lect ion  diagrams  for   the  glass  beam were a l l  
s t r a i g h t .  On the  other   hand,   the   compression  s t ress-s t ra in   diagram 
f o r   t h e   g l a s s  i s  cu rv i l i nea r   w i th  a monotonically  increasing  slope.  
This  apparent anomaly can  be  explained by consider ing an a x i a l  
p res t ressed  beam t h a t  i s  f r e e  from l a t e r a l   l o a d s .  The i n i t i a l  
bending   s t i f fness   o f   th i s  member i s  p ropor t iona l   t o   t he   t angen t  
modulus of a compression  curve a t   t h e   g i v e n   p r e s t r e s s   l e v e l .  Now, 
when a bending moment i s  a p p l i e d   t o   t h i s  member the  compression 
f i b e r s  w i l l  t e n d   t o   g e t   s t i f f e r  and the   t ens ion   f i be r s  w i l l  tend 
t o  become more f l e x i b l e .  The two e f f e c t s   n e u t r a l i z e   e a c h   o t h e r  and 
mit igate   the  inf luence  of   the  compression  nonl inear i ty .  

B .  I-Beam o r  Box B e a m  with  Mult iple  Tendons 

The analysis  of I (or   equivalent ly   box)  beams proceeds  exactly 
a s   ou t l i ned   i n   t he   s ec t ion  on gene ra l   r e l a t ionsh ips .   Re fe r r ing   t o  
Figure 11, we ob ta in   the   fo l lowing   c ross   sec t iona l   p roper t ies :  

Uncracked sec t ion   proper t ies   ( f  E 0)  

A = 2 b t f  + dtw 
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Figure 11 Geometry of Cracked  I-Beam 
Cross  Section 
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Cracked  sect ion  propert ies  

Case I (0 < f < t f )  
" 

A = b ( t f - f )  + dtw + b t f  

- r b  ( t f - f )  2 + d t w ( t f + T -  d f )  + b t f ( $  tf + d  - f ) ]  (33) x = T  2 

3 3 3 tf f 2 
I = i T  [ b ( t f - f )  + twd + b t f  ] + b( t f - f ) (X  - + ) 

2 3 2 + dtw (X - 7 - tf + E )  + b t f  (7 tf + d - X - f )  

Case 11 ( t f  5 f 5 tf + d)  

A = (tf + d - f )  tw + b t f  

2 - X = A  Ctw T -(tf+  d-f)  + b t f  (2tf 3 + d-f ) ]  ( 3 4 )  

3 3 t f  d + f )  2 
I = i T  w [ t ( t f  + d-f )  + b t f  3 + tw ( t f +   d - f ) ( z  - 7 7 

3 2 + b t f  ( T t f +  d - X - f )  
- 

Case I11 ( t f  + d " 4 f 4 2 t f  + d)  

A = b(2t f  + d - f )  

- d f  X = t f + 7 - T  

I = n (  2 t  f + d -  f )  
3 

(35) 

Due to   the  a lgebraic   complexi ty   of   the   above  expressions for - 
A(f),  x(f )  and I ( f ) ,   t h e   e q u a t i o n   f o r   t h e   c r a c k   p e n e t r a t i o n  
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canno t   i n   gene ra l   be   i nve r t ed   t o   f i nd   f= f  (W) . I n   o r d e r   t o   b e  
a b l e   t o   h a n d l e   t h i s  new complication, a new computer  program 
has  been  developed. A l i s t i n g  of  the  program ( in  For t ran  I1 f o r  
t h e  IBM 7094)  plus  sample  input-output i s  p re sen ted   i n  Appendix A. 
This  program i s  c u r r e n t l y  se t  up to   hand le  I-beams wi th   mu l t ip l e  
e las t ic  tendons .   Each   of   the   c ross   sec t ion   proper t ies   A(f ) ,   x ( f )  
and I(f) are programmed as function  subprograms  and,  consequently 
any other   cross   sect ion  geometry may be   inves t iga ted  by  merely 
changing  these  three  subprograms. 

The inversion  of  Equation  (32) i s  accomplished i n   t h e  
computer  program  through  the  vehicle  of a t ab le   o f  W vs f .   Th i s  
t a b l e  i s  cons t ruc ted   in   increments   accord ing   to   input   spec i f i -  
ca t ions .  The inversion i s  e a s i l y   e f f e c t e d  by a function  subprogram 
which  merely  searches  the  table  using W and l i n e a r l y   i n t e r p o l a t e s  
between  the  bracketing  values. 

Prestressed  segmented  glass beams wi th   t he   c ros s   s ec t iona l  
geometries shown in   F igure  1 2  and wi th  E = 1 0 . 5 ~ 1 0   p s i  , 
Et  = 30 x10 p s i ,  and L = Lt = 38 inches  have  been  selected  to 
i l l u s t r a t e  and  compare the  behavior  of I-beams, webless  I-beams, 
and rec tangular  beams of   the same overall   dimensions.   Figure  13 
i l l u s t r a t e s   t he   behav io r   o f   t hese  beams under  terminal  couples 
for   the  case  of   zero  s t i f fness   tendons  (Et=O).  We observe  that   the  
r ec t angu la r  beam i s  t h e   s t i f f e s t   ( l e a s t   d e f l e c t i o n )  member i n   t h e  
i n i t i a l   l o a d   r a n g e ,   t h e  I-beam in  the  middle   range,  and f i n a l l y  
the  webless I-beam i n   t h e   f i n a l   r a n g e .  

6 
6 

It i s  i n t e r e s t i n g   t o   n o t e   t h a t ,   f o r  a load  of  18  inch  kips, 
the   rec tangular  beam has a crack  penetrat ion  of   2 .5   inches,   the  
I-beam has 1 . 7  inches,  and the  webless I - b e a m  i s  s t i l l  uncracked. 
Thus, the  webless  I-beam,  which  has  only 25 percent of t h e   a r e a  
and weight   of   the   rectangular  beam, i s  unquestionably  the most 
e f f i c i e n t   c r o s s   s e c t i o n   f o r   p r e s t r e s s e d  beams i n  t e r m s  of  s t i f f -  
ness   per   uni t   weight .  
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Figure 12 Beam and Tendon Geometries 



Webless 1 - Beom Webless I- Beam 

Rectongulor Beam 
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Figure 13 Load-Deflection Diagrams  and Crack Penetration Diagrams f o r  I-Beams 
with Zero Stiffness  Tendons 



We a l so   obse rve   fo r   t he  case of  the  webless I-beam t h a t  
although  abrupt  changes i n  charac te r   occur   in   the  terminal 
couple   vs .   end  rotat ion  curve and the   t e rmina l   couple   vs .   c rack  
penet ra t ion   curve  as the  crack  passes  through  the  bottom  flange, 
t h a t   t h e r e  i s  i n   f a c t  n o   d i s c o n t i n u i t y   i n   s l o p e   i n   e i t h e r   o f  
these  curves .  One addi t ional   noteworthy i t e m  f o r   t h e   c a s e  of 
ze ro   s t i f fnes s   t endons  i s  t h e   f a c t   t h a t ,  as the   c racks   pene t ra te  
t he   c ros s   s ec t ions ,   even tua l ly   ( f  > tf + d )  the  uncracked  sections 
become i d e n t i c a l  and  hence  the  behavior of t he   t h ree  beams coin-  
c i d e   i n   t h i s   r a n g e .  

The behavior  of  the  three beams f o r   t h e   c a s e   o f   e l a s t i c  
tendons i s  shown i n   F i g u r e  14 and 15. I n   g e n e r a l ,   t h e   e f f e c t  
o f   the   t endon  e las t ic i ty  i s  t o   i n c r e a s e   t h e   s t i f f n e s s  and the  
s lope  of   the  terminal   couple   vs .   end  rotat ion  curve and t o  l i m i t  
i t s  minimum slope as the   load   increases   to   in f in i ty .   There  are 
no   d i scont inui t ies   in   the   s lope   o f   the   curves   for   end   ro ta t ion ,  
p r e s t r e s s   f o r c e ,   p r e s t r e s s  moment, o r   c r ack   pene t r a t ion  as the  
crack  passes  through  the  bottom  flange  for  the  case  of  the web- 
less I-beam. 

As in   the  case  of   terminal   couples  on a rec tangular  beam 
wi th  a s ing le   e l a s t i c   t endon   ( r e f .  1) i t  i s  expec ted   tha t   the  
cracks w i l l  never   pass   completely  through  the  sect ion.   This   fact  
i s  v e r i f i e d  by the   c r ack   pene t r a t ion   cu rves   i n   F igu re  15 which 
seem to  be  approaching  asymptotic  values  other  than dtotal= 4 .  
Whether a l l   t h r e e   c u r v e s  w i l l  have  the same asymptote  depends 
upon t h e   r e l a t i v e   s t i f f n e s s e s  of t he  beams to  the  tendons.   Thus,  
i n   g e n e r a l ,  i t  cannot   be  expected  that   the   behavior   of   the  rec- 
tangular  beam, I-beam,  and  webless  I-beam w i l l  become coinc ident  
as the  appl ied  load becomes unbounded. 
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Figure 14 Load-Deflection Diagrams and Crack Penetration Diagrams  for I-Beams 
with Elastic  Tendons 
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Figure 15 Tendon Force  and Moment vs. Terminal  Couple 
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C . Limit  Analysis 
The  possibility  of  approximating  the  load-deflection  diagram 

of  a  prestressed  segmented  beam  by  one  which  is  elastic-perfectly 
plastic  was  suggested  in  our  previous  report  (ref. 1). Indeed, 
this  possibility  was  exploited in 1952 by  Kooharian in his  study 
of segmented  concrete  arches  (ref. 2) .  In these  arches,  the  com- 
pressive  forces  acting  normal  to  the  segment  interfaces  were  not 
provided  by  prestressed  tendons,  but  rather  by  the  arches'  reaction 
to  live  and  dead  loading. 

The  applicability  of  limit  analysis  for  predicting  the 
ultimate  load-carrying  capacity  of  prestressed  segmented  beams 
is  investigated  in  this  section  with  the  aid  of  the  16-foot 
segmented  aluminum  oxide  beam  shown  in  Figure  16 . Each  segment 
in  this  member  was  four-inches  in  both'length  and  outside  diameter 
with  a  wall  thickness  of  3/16-inch.  The  beam  was  composed 
of 48 such  segments  and  the  prestressing  was  accomplished  by 
pretensioning  a  1/4-inch  steel  prestressing  tendon  that  passed 
along  the  axes  of  the  cylinders  and  was  secured  to  steel  end 
plates.  To  preclude  the  presence  of  secondary  bending  effects 
(beam-column  behavior),  the  tendon  was  constrained  to  the 
centroid  of  the  sections  by  five  closely  fitting  wooden  spacer 
inserts  on  three-foot  centers.  Two  strain  gages  on  opposite 
sides  of  the  tendon  were  used  to  monitor  the  prestress  level. 
Simple  end  supports  were  provided  by  two  saw  horses  as  shown 
in  Figure  17a . The  beam  was  loaded  with  dead  weights  and  the 
finest  load  increment  was  five  pounds. 

The  beam  was  tested  under  the  three  types  of  loading 
shown  in  Figure 18 . In all  cases,  the  loading  was  continually 
increased  until  a  0.005-inch  thick  feeler  gage  could  be  inserted 
between  the  separated  segments  to  a  depth  of  two-inches.  The 
load  associated  with  this  condition  is  recorded  in  Figure 18 

as 'Measured' 
figuration. It was  noted  at  the  conclusion  of  this  test  that 
longitudinal  cracks  had  appeared on the  compressive  side of 
several  segments  that  were  close  to  the  beam's  center.  For  the 

The  first  test  run  was  the  central  loading  con- 
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Figure 16 Alumina Hollow Circular  Prestressed Segmented Beam 



a. Support 
Conditions 

b. Beam  Fracture 

Figure 17 Segmented Alumina Beam  Tests 
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Figure  18  Limit  Analysis of Prestressed  Segmented  A1203  Beam 
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remaining two tests t h e  beam w a s  r o t a t e d   s u c h   t h a t   t h e   f i n a l  
bear ing area w a s  away from the  cracks.   During  the  f inal   loading,  
two concentrated  loads a t  the   qua r t e r   po in t s ,   ho r i zon ta l   c r acks  
developed  under   the  loads  which  resul ted  in   the  catastrophic  
f a i l u r e  shown in  Figure 17b. The f a i l u r e  modes shown in  
Figure 19 are typ ica l   o f  the primary  segment  fractures. 

The predict ion  of   the  ul t imate   loading  of   the  a lumina 
beam fo l lows   prec ise ly   the  methods  of limit analys is   for   s imple  
beams. Here, w e  take   the  plast ic  moment t o  be   the   p res t ress ing  
fo rce  t i m e s  ha l f  the beam depth as shown in   F igure   18a  . The 
formulas  and  predictions  for  the l i m i t  l oads   a r e   g iven   i n  
Figure  18b,  c,  and d where we re f lec t   the   fo l lowing   phys ica l   da ta :  

(1) Pres t r e s s   l eve l ,  F = 5000 l b  
(2)  Weight density  of  tendon - 0.167 l b / f t  
(3 )  Span length,  L = 182 .5  i n .  
( 4 )  Weight  of e n t i r e  beam, W = 90 l b  
(5)  Weight  of l o a d i n g   f i x t u r e  - 10 l b  
(6) P l a s t i c  moment, E.zp = (2) (5000) = 10,000 i n . - l b  

We observe from th i s   f i gu re   t ha t   t he   p red ic t ed   l oads   a r e  from 
2 - 9 2  Percent   to  5 .41 percent  lower  than  the  measured  loads. 

D. Prestressed  Monolithic Beams 

Our  previous work ( r e f .  1) was d i r ec t ed  toward app l i ca -  
t ion   o f   Weibul l ' s   s ta t i s t ica l   f rac ture   theory   to   monol i th ic  
p r e s t r e s s e d   b r i t t l e  beams, neglec t ing   the   e f fec t   o f  beam-column 
ac t ion .   That   e f for t  was devoted  to   developing  the  re la t ionships  
among prestress l eve l ,   l oad ,  geometry  and t h e   r e l i a b i l i t y  of a 
s t r u c t u r a l  member. We then  proposed  to  demonstrate  those  results 
by means of an experimental  program  using  Hydrostone  plaster 
beams. I n   t h i s   y e a r ' s   e f f o r t ,   t h e   a d d i t i o n a l  moment due t o   t h e  
eccent r ic i ty   o f  a s t ra ight   t endon when the  beam i s  l a t e r a l l y  
loaded  has  been  considered.  This may w e l l  no t  be of  major 
s i g n i f i c a n c e   i n  a r e a l - l i f e   a p p l i c a t i o n  where t h e   p r e s t r e s s i n g  
tendon  should  be  constrained t o  d e f l e c t   w i t h   t h e  beam, but i t  
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Figure 19  Typical  Failure Modes of Alumina Beam Segments 
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i s  necessary  explain  the  experimental  results  reported  in  this 
section. The experiments which were carried out  involved  four- 
point bending tests on the  hydrostone beams described  in Appendix 
B. The dimensions are  shown i n  Figure 20 , and the  loading  fixture 
i n  Figure 2 1  . Since a l l  specimens fai led between the  loads,  the 
experiment  can be considered  as a pure bending test with a gage 
length L. 

According t o  Weibull's  theory,  the  failure  probability F 
w i l l  be: 

g = o  ; IJ d-=ou 

where u i s  an intensity  level;  u d i s  the  actual  stress  distribu- 
t i o n  in  the body; El, e,, and e 3  are space  coordinates; v i s  a 
u n i t  volume;  and m, I J ~ ,  and a. are   s ta t is t ical   d is t r ibut ion  para-  
meters. For convenience,  the  notation 

- 

F = 1 - exp [ - B ]  ( 3 8 )  

i s  used, where the  definite  integral B i s   cal led  the  r isk of  
rupture . 

For the  case of a rectangular beam subjected t o  a pure 
couple!the  risk of rupture i s  

oud \ 

2a 
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Dimension: 1 = 45 inch 
b=d= 2.5 inch 

Unprestressed Case: P= 0 
Number of Tests ,N = I30 

Prestressed  Case: P= 10,000 Pounds 

Prestress aij = F~ = 1,600 Psi 

Number of Tests,N= 26 

Figure 20 Schematic of Four-Point Bending Test 
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Figure 21 Prestressed Monolithic Plaster  Beam 



where V i s  the  volume of a beam of  length L, width   by  and depth   d ;  
t he  m a x i m u m  f i b e r  stress 0 = 6M/bd 2 i s  taken as t h e   i n t e n s i t y  
level; d i s  taken as 2y/d;  and y i s  the  coordinate   through  the 
beam depth  measured from t h e   n e u t r a l  axis. For materials l i k e  
Hydrostone that have low t e n s i l e   s t r e n g t h s ,  i t  i s  common p r a c t i c e .  
t o   a t t e m p t   t o   f i t   t h e i r   f r a c t u r e   d a t a   w i t h  a two parameter 
assumption, i . e . ,  = 0. Then, Equation (39) s i m p l i f i e s   t o  

o r  

where  the volume has   been  incorporated  into  the scale parameter 
d o .  

The cumulat ive  probabi l i ty   of   fa i lure   curve  for   the  unpre-  
s t r e s s e d  beams i s  shown in  Figure22  where  the  data  have  been 
ordered   and   the   p robabi l i ty   o f   fa i lure  a t  t h e  stress assoc ia ted  
wi th   the  ith observat ion i s  est imated  to   be F = i / N + 1  where N 
i s  t h e   t o t a l  number of   observat ions.  The maximum l ike l ihood 
estimates of  the  parameters u f 0  and m are found  from  the  solutions 
o f   ( r e f .  3 ): 

N 

i=l 
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Figure 22 Failure Probabilities  for  Unprestressed  Beams 



and 

where the  ai are the   observed   f iber  stresses a t  f r a c t u r e .  When 
the   resu l t s   o f   Equat ion  ( 4 2 )  and ( 4 3 ) ,  ul0 = 8 2 1  p s i  and 
m = 5 . 9 4 ,  were checked by a Chi-squared test  the  response was a t  
t h e   f i f t y   p e r c e n t   l e v e l ,   i n d i c a t i n g  a very good f i t .  

For  the  loading shown in  Figure 20,  t h e  beam-column s o l u t i o n  
i s  ( r e f .  4 ) .  

y E [ s i n  k x + s i n  k ( j - x ) ] -  9 s l n  k c 
( 4 4 )  

where k = d x .  In   o rde r   t o   ve r i fy   t he   a s se r t ion   abou t   t he  
l inear   behavior   o f   the  beam  up t o  i t s  c racking   load ,   def lec t ions  
were measured f o r  one beam. The cracking  load was observed  to  be 
702 pounds  accompanied by a cen te r   de f l ec t ion   o f  ,183  inches.  
Subs t i tu t ing   in to   Equat ion  ( 4 4 )  the   appropriate   values:  

Q = 702 pounds E = 2 . 8  x 10 p s i  
L? = 4 5  inches I = 3 . 2 6  i n  
c = 7 . 5  inches P = 10,000 pounds 
x = i / 2  = 22 .5  inches k = , 0321  in-' 

6 
4 

w e  f i n d  y = .179  inches,  a sat isfactory  agreement .  

The bending stress i n   t h e   o u t e r   f i b e r   c a n  be  found by d i f f e r -  
en t ia t ing   Equat ion  ( 4 4 ) .  

- Edk s i n  kc 
-7 m Q [sin kx + s i n  k(j-x)] 

I n  a manner analogous  to  that   used  in  developing  Equation (39)  one 
can   f ind   the   r i sk   o f   rup ture   to   be  

5 0  



Using  the  transformation w = x - a / 2  and  the  symmetry  about  the 
centerline  this  can  be  written as 

To  normalize  the  integral we can  use z = (2/L)w,  leading  to: 

( d o  -1) m-tl bdL 
B = q i q T  ($) / & dz 

0 P 

or  in  the  notation of  Equation ( 4 2 ) ,  

Using  Equation ( 4 5 )  to  find  the u associated  with  any  value  of 
Q, Equation ( 4 9 )  can  be  evaluated  numerically.  Substitution  into 
Equation ( 3 8 )  will  give  the  probability of failure  for  any  load Q. 
The  results  are  shown  in  Figure 23 along  with  the  test  results. 
Bearing  in  mind  that  only 26 prestressed  beam  tests  were  run, 
the  predicted  failure  probabilities  are  fairly well  borne  out. 
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111. SEGMENTED COLUMNS 

The  study  of  segmented  columns  in  brittle  materials  is  moti- 
vated  in  part  by  the  enormous  potential of ceramics  for  resisting 
buckling  and  compressive  fracture  and  in  part  for  the  relationship 
that  exists  between  column  behavior  and.  bending  behavior.  There 
are  two  intrinsic  properties of segmented  columns  that  demand  spe- 
cial  attention.  First,  the  column  has  no  tension  resistance  and, 
consequently, we must  modify  the  classical  formulation  of  the  buck- 
ling  problem.  Second,  the  imperfect  interface  contract  that  exists 
between  segments  gives  rise  to  statistical  column  behavior.  Fur- 
thermore,  rough  interfaces  cause  uneven  loading  across  the  segments 
which  induces  tensile  stresses  in  directions  transverse  to  the  ax- 
ial  compression.  The  problems  of  stability,  statistics,  and  strength 
are  studied  in  this  chapter. 

A.  Buckling - Perfectly  Flat  Interfaces 

For  the  particular  case  of  a  rectangular  cross  section  with 
perfect  contact  between  segments,  a  static  buckling  analysis  of  a 
segmented  column  will  be  developed.  The  column,  illustrated  in 
Figure 2 4 ,  is  assumed  to  be  acted  upon  only  by  the  steady  (nonfol- 
lower)  forces  F  a  distance  e  from  the  column's  original  neutral 
axis. It is  also  assumed  that  the  number  of  segments  is  very  large 
and  that  the  segment  material  is  entirely  linear  elastic.  Under 
these  assumptions,  solutions  are  found  in  this  section  for  the  sta- 
tic  beam  deflection  equations  describing  the  behavior  of  the  seg- 
mented  beam-column. It is  observed  that  when 

the  deflections  become  unbounded. Also it is observed  that 
2 x EIo 

e+ lim 0 Fb = 7" 
which  is  the  classic  Euler  buckling  load  for  a  monolithic  column. 
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a)  Column Geometry 

4 
d --e 2 

b) Free Body For Determination Of Resultant Moment T 

C) Free Body Diagrams For Cracked And Uncracked  Regions 

Figure 24 Eccen t r i ca l ly  Loaded Segmented Column 
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The development  of t h i s   s o l u t i o n  w i l l  now be  presented. 
Referr ing  to   Figure 2 4  , t h e   r e s u l t a n t  moment acting upon an 
a r b i t r a r y   s e c t i o n  of t h e  column i s  found t o  be 

~ ( x )  = F [y(x> + e - -& f(x)] ( 5  1)  

The govern ing   d i f fe ren t ia l   equa t ion   for   the   def lec t ion  curve 
from  elementary beam theory i s  

rl 

EI(x) . 4. = - T(x) 
dx 

The re la t ionships   for   the   c rack   pene t ra t ion  i n t o  a rectangular  
c ros s   s ec t ion   app ly   i n   t h i s   ca se ,   t hus  

f ( x )  = 0 for  T(x) I Tc 
( 5 3 )  

f ( x )  = d - LWQ for  ~ ( x )  2 T~ F 

where t h e   r e s u l t a n t  moment for   inc ip ien t   c racking ,  T,, i s  given  by 

Tc = 

The l o c a l  moment of i n e r t i a  i s  given by 

I ( x )  = Io = for  T(x) >, Tc b d' 

Using  Equation (51) and ( 5 4 ) ,  Equation ( 5 3 )  may be expressed as 

when y < 5 - e then  T(x) < Tc and  f (x) = 0 

when y = '6 - e then  T(x) = Tc and  f (x) = 0 (56) 

when y > 5 - e then  T(x) > Tc and f (x) > 0 

d 

d 

d 

Consequently,   the  analysis w i l l  depend upon which  of  the 
following two cases   ex is t s :  (1) e n t i r e  column uncracked, (2) 
por t ion  of column cracked. 
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- Case (1):  f (X) E o 
I n   t h i s   c a s e   t h e   d i f f e r e n t i a l   e q u a t i o n ,   E q u a t i o n  (52),  reduces 

t o  
n 

+ k2y = - k e  2 
dx 

where 

(57) 

The boundary  conditions  are  simply 

The solut ion  to   Equat ion  (57)  and (59) i s  r e a d i l y  found t o   b e  

COS k (X- T ) L 

Y(X> = e 
cos 'i L 

Equation  (60) w i l l  be v a l i d  as long as ymax 5 
y (=) = - e ,   the   l imi t ing   load  i s  found L d 

F =  yT- E Io [cos-l ( + ) ] 2 

Case (2) : f (x )  8 0 

I n   t h i s   c a s e   s o l u t i o n s  must  be  found in   both  the  cracked and 
uncracked  regions and forced t o  match  displacements and s lopes 
on the  boundaries  between  the  regions.  Referring  to  Figure  24c, 
x = x l o c a t e s   t h e   l e f t  boundary  between the   reg ions .  Note 
t h a t  T(xcL) = Tc and y(x ) = - e .  By symnetry xcR = L-xcL 
and thus l? = xcR-xcL = L-2xcL. 

CL d 
CL 
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In   the  uncracked  region,  0 5 X 5 xcL, the so lu t ion  found i n  
Case (1) s t i l l  appl ies ,   thus  

COS k (X- 7) L 

Using  the  fact   that   y(xcL) = - e, Equation  (62)  Yields d 

In   t he   c r acked   cen t r a l   r eg ion  k? i t  i s  r e a d i l y  shown t h a t   t h e  
d i f fe ren t ia l   equa t ion ,   Equat ion   (52) ,  becomes 

G = - h ( y + e - = )  d -2  
d x  

where 

h = m  2 F  

Equation ( 6 4 )  may be in t eg ra t ed   once   t o   y i e ld  

( g ) 2 = 2 h ( y + e -  2 )  d -1 + c  

(64) 

The f a c t   t h a t  i t  i s  known a p r io r i   t ha t   y (xcL)  = - e 
enables c t o  be  determined a t   t h i s   p o i n t  by matching  slopes  and  dis- 
placements in  Equation  (62)  and  (66).   Using  this  value  for c and 
Equation ( 65) f o r  k? , Equation  (66) becomes 

d 

($)2 = k2 e2 [(cos 7) k L 2  -2 d2 1 
( y + e - ~ )  d 
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Using  the  fact  that 

and 

L 
= o  

Equation  (67)  may  be  solved  for  ymax,  thus 

Inspection  of  Equation (69)  reveals  that  ymax  becomes 
unbounded  when  the  term  inside  the  braces  approaches  zero, i.e., 
when 

2 -1( 6e k = COS "1 
J 5  d 

or 
-1 6e 2 

F = F b -  - L2 E1o [ cos $")I 
We observe  that  in  the  limit  as  the  eccentricity  vanishes, Fb 
approaches  the  Euler  buckling  load  for  monolithic  columns,  thus 
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B. Nonflat   Interface  Problem 

1. Area and  length  scal ing.-   Ideal ly ,  w e  would l i k e   t o  
f a b r i c a t e  segmented s t r u c t u r e s  f rom  segments   with  perfect ly   f la t  
i n t e r f a c e s ;  however, i t  may n o t   b e   p o s s i b l e   t o   o b t a i n   s u f f i c i e n t  
smoothness on p r a c t i c a l   s i z e   c r o s s   s e c t i o n s .  Even i n  the case of 
our   tungsten  carbide  gage  blocks  (one-half   l ight   band  out   of   f la t ) ,  
w e  can s t i l l  de t ec t   non l inea r i ty   i n   ou r  column response a t  low 
loads.  A t  reasonable  temperatures we may be  able  to  approach mon- 
o l i th ic   behavior   th rough the use of grout  or  gaskets  between the 
segments. A t  elevated  temperatures,  however, these  f i l l e rs  may 
have to   be  dispensed  with.  It i s  fo r   t hese   app l i ca t ions   t ha t  we 
w i l l  t r y   t o  improve  our  understanding  of  the  contact  problem. 

From a p rac t i ca l   po in t   o f   v i ew,   t he   a l t e rna t ive   t o   fu l l   s ca l e  
t e s t i n g  of  segmented  columns is  to   develop a scal ing  procedure 
t h a t  w i l l  enable   us   to   p red ic t   the   compress ion   s t ress -s t ra in   d ia -  
grams f o r  columns  of any length  and a rea  from information  obtained 
from a s i n g l e  segmented  column. We begin  our  search  for  such a 
s c a l i n g  law by examining  the  effects  of  column  l'ength. L e t  us 
assume t h a t   a l l   t h e   i n t e r f a c e s  have  been drawn from the  same pop- 
u l a t i o n  and t h a t   f o r  a s p e c i f i e d   a x i a l  stress t h e r e   e x i s t s  a f r e -  
quency d i s t r i b u t i o n   f o r   t h e   i n t e r f a c e   c o n t a c t  areas. It follows, 
t hen ,   t ha t   t he   de f l ec t ion  of  each  segment w i l l  be a random v a r i a b l e  
which a l so   possesses  a f requency   d i s t r ibu t ion .  Now, t h e   t o t a l  
de f l ec t ion   o f  a multi-segment column w i l l  r epresent   the  sum of  the 
random def lec t ions   o f   the   cons t i tuent   b locks .   Therefore ,   the   f re -  
quency d i s t r i b u t i o n  of the  responses  of many nominal ly   ident ical  
columns represents   the   d i s t r ibu t ion   of   the  sums of   the random 
segment  responses. From the   Cen t ra l  L i m i t  Theorem of Statist ics 
we  are assured   tha t   the  sums of random va r i ab le s  are normally  dis-  
t r ibu ted   regard less   o f   the   form  of   the   d i s t r ibu t ion   fbr   the  random 
variables  themselves.  Thus, we  can   hypo thes i ze   t ha t   t he   s t i f fnes s  
of  segmented  columns  of a given  length  and  under a spec i f ied   load  
are normal ly   d i s t r ibu ted .  

O n  the bas i s  that the s t i f f n e s s   o f  a g i v e n   s i z e  multisegment 
column i s  normal ly   d i s t r ibu ted ,  we can proceed  from  the  following 
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theorem t o   d e s c r i b e   t h e   s c a l i n g   r u l e   f o r   l e n g t h .  Theorem (r.ef. 5 ): 
!!If x i s  normal ly   d i s t r ibu ted   wi th  mean and  standard  devia- 
t i o n  u and a random  sample o f   s i z e  n i s  drawn, then  the  sample 
mean x w i l l  be   normally  dis t r ibuted  with mean v and s tandard 
deviat ion  urn."   Evidence w i l l  be   p re sen ted   i n   t he  next sec t ion  
which  supports  the  hypothesis of normality and the   sca l ing   of   the  
sc a t  ter . 

. .  

- 

It is  considerably more d i f f i c u l t   t o   g e t  a handle on the  
I I  column area" scaling  problem  and,  because  of a poorly  executed 
expe r imen t ,   ou r   e f fo r t s   i n   t h i s   s tudy   can   ha rd ly   shed  any l i g h t  
on t h i s  matter. We do,  however,  have a hypothesis that  we f e e l  
i s  worth  exploring. L e t  u s  examine the   assumpt ion   tha t   the   in te r -  
f ace   con tac t  i s  con t ro l l ed   p r imar i ly  by t h e   h i g h e s t   a s p e r i t i e s  on 
the   su r f ace .   I f  the maximum a s p e r i t y  w a s  measured on each of 
many nominal ly   ident ical   surfaces  we  cou ld   cons t ruc t   t he i r   f r e -  
quency d i s t r i b u t i o n .  The resu l t ing   f requency   curve   represents  
t h e   d i s t r i b u t i o n   o f   l a r g e s t   v a l u e s   i n  a sample  of s i z e  n (or  
r a t h e r  area A ) .  Methods f o r   s c a l i n g   s u c h   d i s t r i b u t i o n s   t o   l a r g e r  
areas a re   t r ea t ed   qu i t e   sys t ema t i ca l ly  by t h e  methods  of  extreme 
value s ta t i s t ics .  Assuming that t h e   s t i f f n e s s  i s  inversely  pro- 
p o r t i o n a l   t o   t h e  maximum a s p e r i t y   h e i g h t s ,   t h e   s t i f f n e s s   d i s t r i -  
bution  F(Et)  might scale a s   t h e   d i s t r i b u t i o n  of smallest va lues ,  
i . e .  , 

FL(Et) = 1 - (1 - FS(Et)ln 

where the subsc r ip t s  L and S r e f e r   r e s p e c t i v e l y  t o  t h e   l a r g e  
and small area columns, E t  i s  the  tangent  modulus, and 
n = %/As. This   hypothesis   conforms  to   our   past   observat ions  that  
smaller  area columns a r e   s t i f f e r .  

2 .  Test r e s u l t s  and i n t e r p r e t a t i o n . -  

a. Description  of  Experiments: The study of  column area and 
l eng th   s ca l ing   r equ i r e s  a da ta   base   o f   compress ive   s t ress -s t ra in  
curves which w e  a t t empted   t o   e s t ab l i sh   u s ing  segmented g l a s s   c o l -  
lumns. To b e   s u r e   t h a t  a l l  segments  would  be drawn from the same 
population,  they w e r e  a l l - c u t  from the   cen t r a l   r eg ion   o f  a s i n g l e  
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sheet of  1/4-inch window g l a s s .  Diamond c o r e   d r i l l s  w e r e  u sed   t o  
accu ra t e ly   p roduce   f i f t y  circular disks   of   each  of   the  diameters ,  
1 / 2 ,  1, 1-1/2, 2 and 3 inches.  To f a b r i c a t e  a p a r t i c u l a r  column, 
t h e   a p p r o p r i a t e   s i z e   d i s k s  were randomly s e l e c t e d  from a r o t a t i n g  
"lazy  Susan" on which  they were sca t te red .   For  ease i n   h a n d l i n g  
and  alignment, the columns w e r e  shea thed   in   th in   paper   tubes .  Com- 
pressometers were a t tached   to   t abs   g lued   to   the   edges   o f   the   top  
and  bot tom  disks   in   the column as shown in  Figure  25.  These  top 
and  bottom  segments were r eused   fo r  a l l  column tests o f   t h e i r  diam- 
e ter .  Polyethylene  pads w e r e  placed on the   t op  and  bottom  of  the 
columns  which w e r e  t h e n   t e s t e d   i n  a Riehle  Universal   Testing 
Machine. The load-deflect ion  diagrams  for   10,  20 and 30 segment 
columns were automatical ly   recorded.  

Seven typical   load-deflect ion  diagrams are shown i n   F i g u r e  26 
f o r  two-inch  diameter  columns  with  10  segments. To e l imina te  
e r r o r s  a t  low loads   due   to   backlash   in   the   au tomat ic   p lo t t ing  
equipment,  only  unloading  curves were considered. The highly  indi-  
vidual   behavior   associated w i t h  columns wi th   nonf l a t   i n t e r f aces  i s  
c l e a r l y   i l l u s t r a t e d   i n   t h i s   f i g u r e .   T h r e e   h u n d r e d  and ninety  such 
curves were obtained and t h e   h y p o t h e s i z e d   s t a t i s t i c a l   r e l a t i o n s h i p  
which relates them w a s  i nves t iga t ed  by s e l e c t i n g   t h e   p a r t i c u l a r  
tangent modulus associated  with  the  120  psi   compression  level .  
This stress w a s  selected  because i t  f e l l   c l o s e   t o   t h e  knee i n  most 
of   the  curves .   Several  methods were s tudied  for   measuring  the 
s lope  of such  curves - two op t i ca l   dev ices ,  a graphical  technique, 
f i t t i n g  a tangent by eye,   and  parabol ic   interpolat ion.  A l l  of  the 
methods  gave  reasonable  results;   but,   the l a t te r  method w a s  f i n a l l y  
se l ec t ed   s ince  it produced  the least scatter. 

A simple  computer  program w a s  u sed   t o  f i t  the   load-def lec t ion  
curves  with a pa rabo la ,   t o  compute the   s lope  a t  120 p s i ,  and t o  
e s t a b l i s h   t h e  mean and the s tandard   devia t ion   assoc ia ted  w i t h  each 
group  of 30 tests represent ing  a given column he ight  and area. 
The  tendency to   buckle   precluded  tes t ing  of   the 20  and 30 segment 
columns f o r  the 1/2-inch  diameter  disks.  The cumulat ive  dis t r ibu-  
t i on   cu rve   fo r   t he   t angen t  moduius  of  each s i z e  column w a s  p l o t t e d  
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Figure 25 Segmented Glass Columns 
(20 segment, 2 inch diameter) 
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Figure 26 Load-Deflection Diagrams  for  Segmented  Glass  Columns 
(10 segments, 2 in. diameter) 



on llNormal Probability Paper" and in  every  case a linear  relation- 
ship was obtained which establishes  the  validity of our normality 
hypothesis.  Typical  distribution  curves  are shown in  Figure 27 
for  the two-inch diameter column.  The s o l i d  lines  represent  the 
normal curves  generated f r o m  the computed mean  and standard  devia- 
tions of the  data.  Table 1 tabulates  the means  and the  coeffi- 
cients of variation  (standard  deviation + mean) for each s ize  
column. 

b.  Interpretation of results:   Referring  all  our remarks t o  
Table 1 ,  we f i r s t  observe that no consistent  pattern develops 
vertically  for  either  the mean o r  the  coefficient of variation. 
In view of the  large  scatter,  as  represented by the  very  high 
coefficients of variation,  this unexpected resu l t  may have occurred 
by chance alone. On the  other hand, the  data may be in   error .  
Examining the  parameters in  the  horizontal  direction  reveals  that 
the mean values  consistently  increase  with  increasing column 
height and, except f o r  the  three-inch column, the  coefficients of 
variation  uniformly  decrease.  Since we cannot a t t r ibu te  a consis- 
tent  trend  in 390 observations t o  chance, we must accept  the pos- 
sible  presence of a systematic  error. 

Recalling  that  the  entire column  and not  j u s t  the  central  
portion, was used  as the gage length, one suspects  the  influence 
of  "end effects."  In  particular,   since a properly run t e s t  would 
have a minimum of  one diameter of segments outside of the gage 
length on the t o p  and bottom, it  seems reasonable t o  suggest  that  the 
Polyethylene pads that  were used were too  flexible.  Furthermore, 
t h i s  f l ex ib i l i t y  i s  of a different  character  than we would exper- 
ience  with  glass end segments. The influence of such pads should 
decrease  with  increasing column height and this  should  lead t o  
increasing  stiffness. This i s ,  of course,  exactly what we observe. 
Also,  since  the same Polyethylene pads and glass end d isks  were used 
f o r   a l l  columns  of equal  area, we would anticipate  that  the "end 
effect" would be reasonably  constant f o r  each of the  five  diameters. 
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TABLE 1 

NORMAL DISTRIBUTION PARAMETERS FOR THE TANGENT MODULUS 
OF SEGMENTED GLASS COLUMNS AT 120 p s i  COMPRESSION 

Measure Column Height (Number of  Segments) 
Diameter Quantity 10 20 

. . - -. " 30 . - I ." -~ 

mean, lo6  p s i  
28.0 % coef .  var. 

0.92 

13.2 % 10.8 % 10.7 % coef .   var .  
0.93  0.93 mean, lo6  p s i  

14.9 % 19.1 % 28.6 % coef .   var .  
1.33 0.88 0.70 m e a n ,  lo6  p s i  

12.0 % 14.1 % 21.0 % coef .   var .  
1.12 0.96  0.63 m e a n ,  l o6  p s i  

8 .0  % 9.1  % 27.5 % coef . var. 
1.45  1.33 1.12 m e a n ,  l o 6  p s i  

112" Buckling  Buckling 
- ~ - " - " ~. 

1" 
~ ~~~ ~ ~ .. . -" ~~ ~~ ~" 

1-112" 
~~~ ~" .. ~ - . - - ~~ -. ~- ~ 

i 

2" 
~~ ~ 

3" I 
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Our c o n t e n t i o n   t h a t  "end effects ' '   inf luenced  the  behavior   of  
t h e  segmented  columns w a s  b r i e f l y  examined by t e s t ing   an  aluminum 
rod   us ing   the   ident ica l   p rocedures  employed f o r   t h e  segmented g l a s s  
columns. The rod w a s  10  inches i n  length   wi th  a two-inch  diameter 
and the in i t i a l  portion  of i t s  stress-strain curve   tu rned   ou t   to  
be   cu rv i l i nea r .  The p rope r   r e su l t  was recorded when t h e  compresso- 
meter attachments were remote  from  the  ends.  Summarizing  then, 
w e  feel  tha t   ou r  measurements of t he  mean tangent modulus  do not  
i n d i c a t e   t h e  "pure"  behavior of t h e  segmented  columns  and t h a t  the 
s tandard   devia t ions  are fair   approximations.  On t h i s   b a s i s  w e  
examined t h e   p o s s i b i l i t y   o f   s c a l i n g   t h e   c o e f f i c i e n t s   o f   v a r i a t i o n s  
of var ious  height  columns  and t h e   r e s u l t s  are tabula ted   in   Table  2 .  
According t o  ou r   hypo thes i s ,   t h i s   quan t i ty   shou ld   s ca l e   a s   l / dn .  
Table 2 shows excellent  agreement w i t h  th is  theo ry   fo r   t he  1 - 1 / 2  
and 2-inch  diameter  columns and f o r  the average .   This   resu l t   to -  
gether  with  the  normality  demonstration of Figure 2 7  t ends   t o  
support  our column height   scal ing  hypothesis .   Unfortunately,   no 
conclusions  can  be drawn about   the   a rea   sca l ing .   Future   exper i -  
ments  with  segmented  columns  should  incorporate the following i m -  
pr ovement s : 

(1) Employ larger   sample  s ize   in   view  of   the  large scatter 

( 2 )  Compressometer  attachments  should  be  kept i n   t h e   i n t e r i o r  

( 3 )  Digi ta l   ou tput   devices   should   be   u t i l i zed .  

observed. 

of   the column. 

C .  Backbone Column 

It was e s t a b l i s h e d   i n   t h e   f i r s t   p h a s e  of t h i s  program t h a t  i m -  
pe r f ec t   con tac t  between t h e   i n t e r f a c e  of a segmented  column  caused 
t ransverse  stresses upon app l i ca t ion   o f   ax i a l   l oads .  These  trans- 
ve r se  stresses were compressive  near   the  interfaces  and t e n s i l e   i n  
t h e   i n t e r i o r  of the  segment.  Consequently, i t  appeared   tha t   i f   the  
la teral  geometry  of the  segments   could  be  appropriately  a l tered,  w e  
might  induce  compression i n  t h e   i n t e r i o r  and t ens ion   nea r   t he   i n t e r -  
faces  of  the  segments.  Thus,  the two a f f e c t s  would  tend t o   c a n c e l  
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MEASURED AND PREDICTED  VALUES  FOR  THE  COEFFICIENT OF VARIATION 
OF STIFFNESS  FOR  SEGMENTED GLASS COLUMNS 

Column  Height (Number of Segments) 

10 30  2 0  
Diameter 

111 
Measured 

27.5% Theory 
8.0%  9.1%  27.5% 

12.1% 14.8%  21.0% Theory 
12.0% 14.1% 21.0% Me asur ed 

15.9% 19.4% 

211 
Measured 28.6%  19.1%  14.9% 
Theory 28.6% 

13.2%  10.8%  10.7% Measured 

16.5% .20.2% 

31' 
Theory 10.7%  7.6% 6.2% 

Measured 22.0% 13.3% 12.0% 

Theory 22.0% 12.7% 15 5% 

1- 1/2" 

Aver age 
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one  another and thereby  give rise t o  a segmented column wi th  a 
h ighe r   s t r eng th   t o   we igh t   r a t io   t han  a pr ismatic  column. The 
geometry se lec ted   for   th i s   exper iment  i s  shown in   F igu re  28,  to- 
gether   with a c y l i n d r i c a l  segment  of t he  same height  and i n t e r f a c e  
area. This lat ter specimen w a s  used t o   e s t a b l i s h  a group  of  con- 
t r o l  columns. 

Using  the  procedures  outlined i n  Appendix B y  Hydrostone I 

Gypsum specimens w e r e  cas t   in   each   of   the   shapes  shown in   F igu re  28. 
With the  s imple  setup shown in  Figure  29,   the   ul t imate   compressive 
s t r eng th  of 54  three-segment columns were obtained. The physical  
and mechanical  properties  of  these columns are summarized i n  
Table 3 .  It i s  of c o n s i d e r a b l e   i n t e r e s t   t h a t  a number of  columns 
tested  developed  longitudinal  cracks  through two o r   t h r e e  of t he  
segments. As  shown in   F igu re  2 9 ,  the   cracks  did  not   s top a t  the  
in t e r f aces   bu t   pas sed   i n to   t he   nex t   cy l inde r   a s   i f   t he  column 
were  continuous. 

The backbone  columns  were t e s t e d   i n   t h e  same manner as the  
c y l i n d r i c a l  columns as depic ted   in   F igure  30. As i n d i c a t e d   i n  
Table 3 the   s t rength-weight   ra t io  of t he  backbone  column i s  not  
s ign i f icant ly   h igher   than   the   cont ro l  column.  Furthermore,  the 
mode of f a i l u r e   c a s t s  doubt upon  any poss ib l e   supe r io r i ty  of the  
backbone  specimen. P r i o r   t o   u l t i m a t e   f r a c t u r e ,   t h e   l i p s   o r  
f langes on the  dogbone  segments  were s t r ipped   of f   l eav ing  a p r i s -  
matic column of smaller diameter. It would then  appear  that   the 
h igher   s t rength-weight   ra t io  i s  a t t r i b u t a b l e   t o  a s i z e   e f f e c t  and 
not  a geometry e f f e c t .  

When s t r e s s   concen t r a t ions   appea r   i n  a compressive  f ie ld  it 
i s  possible  to  achieve’Yntell igent  behavior”  from  materials which 
usua l ly   sus t a in  no stress r e d i s t r i b u t i o n  mechanism. In   add i t ion   t o  
the  dogbone  specimen,  another  example of such  behavior w a s  described 
to   t he   au tho r  by H. A. Perry  of  the Naval Ordnance Laboratory. 
Glass spheres  were  fabricated from two hemispheres  that were at- 
tached  in   such a way t h a t  a bead  appeared  around  the  equator on 
the   i n s ide .  When the  sphere was submerged i n   t h e  ocean,  the  bead 
w a s  s t r ipped   o f f  and appeared as chips   in   the  bot tom  of   the  sphere.  
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Figure 28 Example of Cylinder  and  Backbone  Specimens 



Figure 29 T e s t  Setup f o r   C y l i n d r i c a l  Coluums 
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TABLE 3 
PHYSICAL  PROPERTIES OF CYLINDRICAL AND BACKBONE COLUMNS 

Physical  Properties Backbone Cylindrical  
In t e r f ace  Diameter 3 i n  3 i n  

ISegment Weight I 5 9 3 . 6  gm I 333 .67  gm I 
INumber of  Segments 3 3 

I 

Avg. U l t .  Compressive Strength 

3 i n  3 ' i n  Central  Diameter 

4 6  54 Number of Columns Tested 

Hydrostone Hydrostone Material 

2 8 . 6  Lb Avg. S trength-Weight  Ratio 

9580 l b s  16989 l b s  
S 

gm 
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Figure 30 T e s t  Setup f o r  Backbone Columns 
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A s  a final  observation  concerning  the  backbone  specimen 
we note  that  this  shape  makes  it  possible  to  apply a lateral 
prestress  to a column  using  straps  at a small  number  of 
locations.  This  idea is illustrated in Figure 3L Such  struc- 
tures  may  have  advantages  over  jacketed  or  continuously  wound 
columns.  The  bulkier  prestressing  tendons  may  be  less  fragile, 
easier  to  insulate,  or  require  fewer  attachments. A similar 
method of prestressing  is  briefly  discussed  in  Section V for 
the  ogive  shell. 

7 4  
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Prestressing 
Tendons 

Column  Segment 

Figure 31 Laterally  Prestressed  Backbone Column 
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I V .  PRESTRESSED PLATES 

The s i m i l a r i t y  between p res t r e s sed  segmented  beam behavior 
and tha t   o f   duc t i l e   bend ing  made i t  poss ib l e   t o   success fu l ly   app ly  
the techniques  of limit ana lys i s   t o   desc r ibe  the u l t imate   load  
carrying  capacity  of  prestressed  segmented beams. The extension of 
these  techniques  to  prestressed  segmented plates i s  inves t iga t ed  
in   th i s   sec t ion .   Pre l iminary   exper iments  are conducted  using  both 
monolithic  and  segmented  circular  plates.  

A. Segmented P l a t e s  

I f  a c i r c u l a r   p l a t e  i s  sub jec t ed   t o  a uni form  rad ia l   p ressure  
around i t s  per iphery,  a homogeneous i s o t r o p i c  s ta te  of  plane com- 
press ive  stress uo i s  in t roduced   in to   the   p la te .  Any and a l l  
c racks   in   such  a p l a t e  w i l l  t end   to   c lose   up ,  and i n   p a r t i c u l a r ,   t h e  
ul t imate   bending  res is tance  a long  such  cracks w i l l  b e   c a l c u l a t e d   i n  
t h e  same manner used  for  segmented beams. R e f e r r i n g   t o   F i g u r e   1 8 a ,  
t he   l imi t ing  moment pe r   un i t   l eng th   i n  a p l a t e  i s  simply 

2 
Mo = 

where u i s  t h e  stress act ing  normal   to   the  crack  interface  and 
t i s  the  p l a t e  thickness .  We sha l l ,   o f   course ,   t ake  D as the  pre-  
stress rs . This   l imi t ing  moment capac i ty  would no t  be e f f ec t ed  by 
moments ac t ing   t ransverse   to   the   c rack   which   sugges ts   the  a p p l i c a -  
t i on   o f   t he   squa re   y i e ld   c r i t e r ion  shown i n   F i g u r e   3 2 .  

P 

M2 t 

Figure 32 Square  Yield  Cri ter ion 
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We s h a l l   u s e  this c r i t e r i o n   t o   a n a l y z e  a c i r c u l a r   p l a t e   o f   r a d i u s  
R which i s  s imply   suppor ted   0n .a   c i rcu lar   r ing   o f   rad ius  r and i s  
sub jec t ed   t o  a central load P brought   onto  the  plate   through a b lun t  
c i r c u l a r   r o d  of r ad ius  a. Assuming the   y i e ld   (o r   c r ack )   pa t t e rn  
shown i n   F i g u r e  33, w e  observe that  the loading   d ie  w i l l  u l t ima te ly  
contac t   the   cen ter l ine   o f   each  segment a t  only  one  point a d i s t ance  
of a from t h e   p l a t e  center. The loading a t  such  points  w i l l  be 
P/n  where n i s  t h e  number of  segments. The v i r t u a l  work done by 
these   l oads   i n   t he  assumed displacement   pat tern i s  

The energy  diss ipated a t  t h e   y i e l d   l i n e s  i s  given by 

Equat ing   these   v i r tua l   energ ies  we ob ta in  

o r  
P = O  t 2 n t a n :  R 

P ( r - i  1 
n 

This   load  represents  an  upper bound on the   t rue   co l l apse   l oad  of  
t h e   p l a t e ,  and consequently,  w e  should  choose  from among t h i s   c l a s s  
of co l l apse  mechanisms the  one  which gives  the  lowest  load.  This 
occurs when n -* m y  and hence, 

2 R  p = 7T cr t ( r T )  P 
n - + m  (73)  

The t rue   co l l apse   l oad  i s  rea l ized   on ly  when the   co r rec t   y i e ld   pa t -  
t e r n  i s  chosen.   In   the  present  case, symmetry sugges ts   tha t  we 
have made the   r i gh t   cho ice .  

We can  cause  yielding  to   occur   a long a f in i te ,number  of r a d i a l  
l i n e s  by s t rengthening   the  material between  them. We would expect 

7 7  



i- 2 R  

Deflection Of  Load = (9 ) 

Rotation w = A -  - rcos7L n 
n 

Radial  Rotation  Component = 2 w  sin 7 

b = r cos 

7T 

7T 

Figure 33 Collapse  Pattern for a  Circular  Plate 
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the   capac i ty   o f  the p la t e   t o   i nc rease   w i th   such  a procedure  and 
t h i s  i s  exac t ly  what Equation  (72)  predicts.  As we f o r c e   f a i l u r e  
to  occur  along  fewer  and f e w e r  l i nes ,   t he   r equ i r ed   s t r eng th   o f   t he  
segments w i l l  correspondingly  increase.  A s  a r u l e ,   t o   a v o i d   f r a c -  
tu r ing   the   e lements   in  a segmented  component we  should select seg- 
ment geometries that approximate  the true y i e l d   p a t t e r n s   f o r   t h e  
s t r u c t u r e .  An extensive  t reatment   of  l i m i t  ana lys i s  of p l a t e  
s t r u c t u r e s  can be  found i n  Wood ( r e f .   6 ) .  

To e s t a b l i s h   t h e   p o t e n t i a l  of the  proposed  analysis  procedure, 
w e  cons t ruc ted  two segmented c i r cu la r   p l a t e s   u s ing   e igh t   Hydros tone  
plaster  segments i n  each. The p r e s t r e s s i n g  w a s  accomplished by 
making a double  wrap  of steel s t rapping  about   the  per iphery  of   the 
p l a t e  as shown i n   F i g u r e  34  and t igh ten ing   wi th  a s tandard band- 
i n g   t o o l   u n t i l   y i e l d i n g   o c c u r r e d   n e a r   t h e   g r i p .  Seven  monolithic 
p l a t e s  and two segmented p l a t e s  were p r e s t r e s s e d   i n   t h i s  way and 
t h e   r e s u l t i n g   s t r a i n s   i n   s i x  of t h e   p l a t e s  were recorded by r a d i a l -  
l y   p o s i t i o n e d   e l e c t r i c a l   r e s i s t a n c e   f o i l   s t r a i n   g a g e s .  The s t r a i n  
gage  readings and  measured  loads f o r   t h e s e   p l a t e s  are tabula ted  
i n  Table 4 . The suppor t   f i x tu re  and loading  setup  are  shown i n  
Figures 35 and 36 r e spec t ive ly .  The load  deflection  diagrams  for 
t he  segmented beams are shown in   F igure  37 where we observe w e l l  
def ined   hor izonta l   reg ions .  Upon unloading, w e  obtained  complete 
def lect ion  recovery  with  only  occasional   chipping a t  t h e  segment 
edges. 

As evidenced  from  Table 4 , the   s t raps   d id   no t   apply  a uniform 
r a d i a l   p r e s t r e s s ;  however, s i n c e   c a r e  was t aken   t o   t i gh ten   t he   s t r aps  
i n   t h e  same way f o r  a l l  cases, i t  i s  f e l t   t h a t   t h e   a v e r a g e   p r e s t r a i n s  
i n   t h e   v a r i o u s   p l a t e s  were about  the same. On t h i s   b a s i s ,   t h e   p r e -  
s t r a i n  w a s  taken as the  average a t  sixteen  gage  readings,  i .e .  , 
4 9 . 4 ~ 1 0 - ~   i n c h / i n c h .  Using th i s   va lue   toge ther   wi th   the   p la te   p ro-  
pe r t i e s   t abu la t ed   i n   Tab le  5 Equation  (72)  predicts a y ie ld   l oad  
of P = 309 l b .   T h i s   v a l u e   d i f f e r s  from t h e  measured  values of 
270 l b  and 288 l b  by 14.4  percent and 7.3 percent   respec t ive ly .  

79 



00 
0 

Figure 34 Prestressed  Monoli thic   Circular   Hydrostone  Plaster  Plate 



TABLE 4 

PRESTRESSED MONOLITHIC AND SEGMENTED CIRCULAR PLATE STRENGTHS 

P l a t e  Number I S t r F , x   i n c / i n .  

Monolithic 1 
Monolithic 2 
Monolithic 3 
Mono 1 i t h i c  4 
Monolithic 5 
Mono 1 i t h i c  6 
Monolithic 7 

Segmented- 1 
Segmented 2 

.~ 

defect.  
55 70 

45 50  

defec t .  70 60 
55 45  40 
55 50  30 
65 

no  gages 
no gages I I 

50 10 40 
no  gages 

Yield Load Ultimate Load 

(1b) ( Ib) .  

400 

410 
520 370 
582 345 
540 

430 35 0 
535  300 
7 06  330 
624 

270 
288 

"- 
"- 

Average S t r a i n  Gage Reading : 4 9 . 4 ~ 1 0 - ~  i n .   / i n .  
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Figure 35 Ring  Support f o r  Ci rcu lar   P la tes  



! 

Figure 36 T e s t  Setup  for  Loading  Circular Plates 
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0 

30 0 

0 
Def lect ion 

Figure 37 Central Load - Central  Deflection Diagrams 
for Prestressed Segmented Circular  Plates 



TABLE 5 

PHYSICAL  PROPERTIES OF HYDROSTONE PLATES 
I l - i - .  . .  .. ." . .. . . . . ..."..__""...I ..".. - =....,- - 

Pla t e   r ad ius  R = 7.5 in. 

Suppor t   r ing   rad ius  r = 6.75 i n .  

Cent ra l   load   d ie   rad ius  a = 0.906 i n .  

Plate thickness  t = 5 / 8   i n .  

Average p l a t e   s t r a i n  E = 4 9 . 4 ~ 1 0 - ~   i n .   / i n .  

Modulus of e l a s t i c i t y  of Hydrostone E = 2 . 7 9 ~ 1 0   p s i  

Poisson's  Ratio  for  Hydrostone v = 114 

Average p r e s t r e s s   l e v e l  0 = E  l-v = 184 p s i  

Number of segmented beam elements = 8  

P 
6 

E 

" ~ ~ . -~~~ ~ ~- 
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B.  Monoli thic   Plates  

When a p res t r e s sed   mono l i th i c   p l a t e  i s  slowly  loaded,  conven- 
t i o n a l  elastic behavior i s  e x p e r i e n c e d   u n t i l   t h e   n e t   t e n s i l e  stress 
a t  some point  exceeds  the material s t r e n g t h  and a crack  develops.  
I n  a c o n s t a n t   s t r a i n  rate machine,  the  load  would f a l l   o f f   a b r u p t l y  
and then  increase  again as the   s t r a in   con t inued   t o   i nc rease .   Th i s  
behavior i s  depic ted   in   the   cen t ra l   load-cent ra l   def lec t ion   d iagram 
shown in   F igu re  38 for   the   second  monol i th ic   p la te   re fe renced   in  
Table 4 .  As w e  see, o the r   c r acks   con t inue   t o  form u n t i l   t h e   s t r e n g t h  
of   the   surv iv ing   mater ia l  i s  s u f f i c i e n t   t o   f o r c e   u n c o n s t r a i n e d   y i e l d -  
i n g   i n   t h e   e x i s t i n g   c r a c k   p a t t e r n .  The r a d i a l   c r a c k   p a t t e r n   ( a r t i f i -  
c ia l ly   darkened)  shown i n   t h e   t o p   p l a t e   i n   F i g u r e  34 i s  exac t ly  what 
our l i m i t  ana lys i s   t heo ry   an t i c ipa t e s .  The v i s ib l e   c rush ing  a t  the  
c e n t e r   o f   t h i s   e a r l y   p l a t e  test  was caused by a s tee l  b a l l   t h a t  w a s  
used  or iginal ly   to   load  the  plate .   Subsequent  tests employed a c i r -  
cu la r   d i e   t o   d i s t r ibu te   t he   cen t r a l   l oad   ove r  a g r e a t e r  area. 

Seven c e n t r a l   l o a d   t e s t s  were conducted  with  monolithic  plates 
and t h e i r   y i e l d  and u l t imate   s t rengths   a re   recorded   in   Table  4 . 
The average   u l t imate   s t rength   for   these  members i s  562 pounds  which 
represents  a considerable   increase  in   the  average  s t rength  of  mono- 
l i t h i c   p l a t e s   w i t h o u t   p r e s t r e s s i n g ,  328 pounds. The d i s t r i b u t i o n  
curve  for   the  s t rength  of   these  unprestressed  control   p la tes  i s  
shown i n   F i g u r e 3 9  where we observe a cons iderable   spread   in   the  
da ta .   This   impl ies   tha t   very  low s t rength   va lues  w i l l  be   present  
i n  a population  of  even a few hundred.  Consequently,  very "low 
strength ' '   operat ing  levels  must  be  used to   ob ta in   reasonable  re l ia-  
b i l i t y .  Fo r   t he   p re s t r e s sed   p l a t e s ,  on the  other   hand,   there  i s  a 
b u i l t   i n   f a i l - s a f e  mechanism.  Although the   u l t imate   load  i s  s t a t i s -  
t i c a l  and may be   sub jec t   t o  wide v a r i a b i l i t y ,   t h e   y i e l d   l o a d  i s  
bounded  from  below. We observe   tha t   the   weakes t   p la te  i s  achieved 
when an i n f i n i t e  number of r ad ia l   c r acks   deve lop   i n  which case 
t h e i r   y i e l d   l o a d  i s  computed  from  Equation  (73).  Real  plates w i l l  
c r a c k   i n  a f i n i t e  number of  places and w i l l  therefore   be   s t ronger .  
For   our   prestressed  monoli thic   plates ,   Equat ion 73 p red ic t s  a y i e l d  
load  of 289  pounds  and w e  observe  from  Table 4 t h a t  a l l  of t h e  
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Figure 38 Central  Load - Central  Deflection  Diagram of a Prestressed 
Monolithic  Circular  Hydrostone  Plaster  Plate 
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Figure 39 Failure  Probabilities for Monolithic  Circular 
Plates  without  Prestressing 



yield  strengths  reported  are  higher  than  this  value;  the average 
load is 358 pounds. 

We should  point  out  that our t w o  mathematical models for 
beams  assume  an in f in i t e  number of segments and should  therefore 
predict a lower bound  on the  behavior of monolithic  prestressed 
beams. In  the  exceptional  case of a beam-column; however, w e  can- 
not make th i s  statement  since  the  resistance  at a section can be 
lowered by vir tue of the beam deflection. The distance from the 
outer compressive beam fibers t o  the  centroid of the tendons de- 
creases  as  the beam deflection  increases. As a matter of fac t ,  
a point of ins tab i l i ty  i s  f inal ly  reached and the  prestressing 
force  participates  in  the  catastrophic  destruction of the beam. 
Finally,  since a monolithic segment sustains no separation, i t  i s  
s t i f f e r  than an equivalent  length of several segments.  Consequently, 
beams constructed  with a f i n i t e  number  of elements w i l l  be s t i f f e r  
than  predicted from an in f in i t e  number of elements. 
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V. PRELIMINARY INVESTIGATIONS  OF PRESTRESSED SHELLS 

Fundamental s t u d i e s  of prestressed  elements demand as a pre- 
r e q u i s i t e   t h a t  methods be  avai lable   for   applying,   maintaining,  and 
moni tor ing   pres t ress ing   forces .   In   the  case of s h e l l   s t r u c t u r e s ,  
t h i s  may r equ i r e  a cons iderable  amount of  innovation  and,  perhaps, 
t he   e l abora t e  development  of special   techniques.   Since  such 
e f f o r t s  are beyond the  scope of  our  present  endeavors, a b r i e f  
study  has  been  undertaken  to  examine two conventional  approaches 
t o   t h e  problem  of pres t ress ing   an   og ive   she l l  and a c y l i n d r i c a l  
s h e l l .  

A. Cyl indr ica l   She l l  

For  problems  which  require  the  continuous  application of pre- 
s t r e s s ing   fo rce   ove r   l a rge  areas, it i s  sometimes p o s s i b l e   t o   u t i l i z e  
the  technique  of  overwinding.  Here, we v isua l ize   us ing  a b r i t t l e  
component i n   p l a c e  of a mandrel.  Continuous  filaments  under  high 
tens ion   a re   then  wound onto  the  components, and i n   t h i s  way, a j acke t  
i s  formed permanently  over  the  monolithic  or  segmented  element  which 
may prevent  the  leakage of l iqu ids   o r   gases  and which  could  provide 
an  energy  absorbing  layer  that  would p r o t e c t   t h e  component from 
local   impacts .  

To inves t iga t e   t he   po ten t i a l  of th i s   t echnique ,  a th ree   inch  
diameter  alumina  cylinder  with a 0 . 2  inch w a l l  th ickness  was over- 
wrapped with  preimpregnated 20 end glass   roving.  An e l e c t r i c a l  
r e s i s t a n c e   s t r a i n  gage was mounted on the  inner  w a l l  of t he   cy l in -  
der   to   monitor   the  induced  s t ress   caused by the  overwinding.  Using 
an  overwinding  tension of 0.325 lbs/end  to  produce a tens ion   force  
of 65 lb / in .   a long   the   cy l inder   ax is ,  we obta ined   the   re la t ionship  
shown i n   F i g u r e  40 between  induced  prestress and f ibe rg la s s   l aye r s .  

The r e l a t i o n s h i p  between  the  induced prestress i n  a cy l inde r  
and the number of layers  of overwound f i laments  w a s  obtained 
where  account i s  taken of the  changes  in  f i lament stress that   occur  
when addi t iona l   f i l ament   l ayers   a re   appl ied .  The hoop stress an 
is  given by 

0 2 : 1 
n t j=1 (r-3) (j-1) 

1 + (% (--) 
[r+(-j-I) $ 3 

90 



60 

5 0  

6 
rr .- 
v) 
a 4 0  
Y 

"0 - 
X 
v) 

3 0  
5 
b 
0 
a 
3 * c 2 0  - 

I O  

0 

/ /y I 

//NOTE : Specimen Thickness= 32 
3" = t 

Specimen  Diameter = 3" = 2r 

Applied  Tension = 657= # T 

E,= 8x  IO6 Roving 

E,  = 40 X IO6 A!, 0, Cylinder 

I 8 =.005" R.oving  Diameter 
I 

1 I 1 I 1 I 
2 4 6 8 10 12 14 

Fiberglass Layers n 
Figure 40 Relationship  Between Cylinder Prestress  and Layers 

of Overwound  Fiberglass 



where 6 i s  the layer   th ickness ,  t i s  the w a l l  th ickness   of  
the cy l inde r ,  r i s  the   ou t s ide   r ad ius  of the cy l inde r ,  T i s  the 
overwind  tension  per  unit   length i n  t h e   d i r e c t i o n   o f   t h e  axis of 
t he   cy l inde r ,  and El and E2 are the modulus of e l a s t i c i t y   o f  
t he   cy l inde r  material and the f i lament  material r e spec t ive ly .  
This  theory assumes t h a t  w e  have  perfect   packing  of   rectangular  
f i b e r s ;  however, f o r   c i r c u l a r   f i b e r s   w i t h o u t   n e s t i n g  we can modi- 
fy  the theory by r ep lac ing  E2 by nE2/4.  Using  the  following, 
da ta ,   the   theory  i s  p l o t t e d   i n   F i g u r e  

T = 65 l b / i n .  t = 3/32 i n .  
6 = 0.005 i n .  E l  = 40x10 p s i  
r = 1.5  in .  E2 = 8x10 p s i .  

6 
6 

Consider ing  the  prel iminary  nature   of  the experimental   se tup  used,  
the  agreement  between  the  measured and predic ted   va lues  i s  q u i t e  
s a t i s f a c t o r y .  On t h i s   b a s i s ,   c a l c u l a t i o n s   p e r f o r m e d   f o r   u l t r a  
high  strength  overwinding materials such as high  carbon s tee l  w i r e  
and "S" f i b e r g l a s s   s i n g l e  end i n d i c a t e  that  induced stresses ex- 
ceeding  1000  psi / layer   for  a one inch w a l l  thickness  specimen are 
not   unreasonable .   This   implies   that   for   pract ical   purposes  any 
des i r ed   l eve l  of prestress  can  be  obtained  provided that  winding 
on a geodesic  path i s  poss ib le .  

B .  Ogive S h e l l  

I f  an axial   compressive  load i s  applied  to  the  apex  of an  ogive 
s h e l l ,   t h e  membrane s t r e s s e s   i n . t h e   s h e l l   w a l l   a r e   c o m p r e s s i v e   i n  
every   d i rec t ion .  We see from t h i s  example t h a t  an   e f f ec t ive  s ta te  
o f   i n i t i a l  stress can  be  accomplished by applying a p r e s t r e s s i n g  
force  a t  a d i s c r e t e   p o i n t .  Because t h e   a p p l i c a t i o n  and  monitoring 
of  such a force  i s  except iona l ly   s imple ,   the   fabr ica t ion   of   og ive  
s h e l l s  was attempted  during  this  phase  of  the program. 

F i g u r e   4 1   i l l u s t r a t e s  one  of  several  segmented  Hydrostone 
p l a s t e r   s h e l l s  which were produced by c u t t i n g  up  monoli thic   shel ls  
before  they  completely  cured. The i n t e r f a c e s  o f  t hese   she l l s   t end  
t o   c l o s e  up  under  compression;  however,   the  thin  sections  near  the 
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Figure 41 Segmented  Ogive  Shell  Prestressed at it's Apex 



apex are breaking  under load. We attribute  these  failures to 
extremely  rough  interface  conditions.  Further  studies  with  these 
shells  should  address  themselves  in  this  problem  in  addition  to 
investigations  of  prestressed  monolithic  behavior. 
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APPENDIX A 

I-BEAM COMPUTER PROGRAM 

In   t h i s   append ix ,  w e  shall   present  the  computer  program  which 
w a s  developed to   perform  the  analysis   of   prestressed  segmented 
I-beams wi th   mu l t ip l e  elastic tendons. The program cons is t s   o f  a 
main  program  plus  ten  function  subprograms. The main  program es- 
s e n t i a l l y   c o n s i s t s  of   those  equat ions  presented  in   the  sect ion on 
gene ra l   r e l a t ionsh ips .  Those re la t ionships   which  depend e x p l i c i t l y  
upon the   pa r t i cu la r   c ros s   s ec t ion   be ing   i nves t iga t ed   have   been   i so -  
l a t e d   i n t o   i n d i v i d u a l   f u n c t i o n  subprograms.. The applied  bending 
moment d i s t r ibu t ion ,   i n   no rma l i zed  form,  has  also  been  isolated 
i n  i t s  own function  subprogram.  Hence,  only  the  appropriate  sub- 
program(s)  need  be  changed to   permi t   the   inves t iga t ion   of   d i f fe ren t  
c ross   sec t ions   and/or   appl ied   loadings .  

Immediately  following  this  introduc,t ion i s  a glossary  of some 
of   the   impor tan t   var iab les   as   they   appear   in   the  program  along  with 
t h e i r   r e l a t i o n s h i p   t o   t h e   v a r i a b l e s   u s e d   i n   t h e   p r e s e n t a t i o n   o f   t h e  
ana lys i s   e l s ewhere   i n   t h i s   r epor t .  Next a f t e r   t h e   g l o s s a r y  i s  a 
l i s t i n g  of  the  computer  program as w r i t t e n   i n   F o r t r a n  I1 f o r   t h e  
IBM 7094. F ina l ly ,  a sample  input  and  corresponding  output are 
presented. 

The output  has  been  designed  to  present as much r e l evan t   i n fo r -  
mation as p o s s i b l e   i n  a meaningful  manner. The f i r s t  page  of  out- 
p u t   c o n t a i n s   a l l   t h e   i n p u t   d a t a   p l u s   t h e   r e s u l t s  of a few preliminary 
c a l c u l a t i o n s .  Next i s  presented   the   t ab le   o f  W vs. f .  The f i r s t  
d i f f e r e n c e s   i n  W a r e   a l s o   g i v e n   t o   i l l u s t r a t e   w h e t h e r   t h e   f u n c t i o n  
i s  approximately  l inear   between  entr ies   in   the  table  as assumed  by 
t h e   l i n e a r   i n t e r p o l a t i o n  scheme i n   t h e   f u n c t i o n  subprogram FCP(W). 

The remainder   o f   the   ou tput   cons is t s   o f   eva lua t ing   def lec t ions ,  
end r o t a t i o n s ,  etc. a t  the   va r ious   s e l ec t ed   va lues   o f   t he   app l i ed  
loading. The f i r s t  value  of   the  appl ied  load is always  zero and is  
followed by an  intermediate  value  which  leads  to  the  value  corres- 
ponding to   i nc ip i en t   c r ack ing .  The program  then  truncates  the 
cracking  load  to  a spec i f i ed  number of   f igures  and proceeds by adding 
specif ied  increments  i n  appl ied   load   un t i l   e i ther   the   load   exceeds  
the   spec i f i ed  maximum o r  one  of the  counters   exceeds i t s  spec i f i ed  
maximum. The f i n a l  i t e m  i n   t h e   o u t p u t  i s  a t a b l e  of applied  load 
v e r s u s   c e n t r a l   d e f l e c t i o n ,   l e f t  end r o t a t i o n ,  and r i g h t  end r o t a t i o n .  
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Partial  l i s t ing   o f   var iab les   appear ing   in   computer  program: 

AL ............. appl ied  load,   e .g .   force,  moment, etc. 

ALDMBM ......... appl ied  load  divided by maximum bending moment, 
eg . P/ ( P L / ~ )  

ALMAX .......... value  of  applied  load  which i s  not to  be  exceeded 

AT ............. area of each  tendon, At 

CP ............. crack p e n e t r a t i o n , f  

CPXD ........... c rack   pene t r a t ion  f a t  xA 

DAL ............ increment  in  applied  load 

DCENT .......... d i s t ance  q f rom  bot tom  of   sect ion  to   center   of  
g rav i ty  

DELTA .......... d e f l e c t i o n  A a t  xa 

D I M 1  = B ....... width  of  flange  for  I-beam, b 

DIM2 = TW ...... thickness   of  web f o r  I-beam, tw 

DIM3 = D ....... depth  of web f o r  I-beam, d 

DIM4 = TF ...... th ickness   o f   f lange   for  I-beam, tf 

DIM5, e tc .  = 0.. no t   used   for  I-beams 

DISC(1) ........ d i s t ance  from  bottom  of  section  to ith discon t inu i ty  

DTOT ........... overal l   depth,   d total ,   of   cross   sect ion 

EB ............. elast ic  modulus  of beam, E 

EC ............. e f f e c t i v e   i n i t i a l   e c c e n t r i c i t y   o f   p r e l o a d ,  e 

ECT(1)  ......... e c c e n t r i c i t y  of ith tendon, ei 

ET ............. elastic modulus  of  tendon, E t  

F .............. t o t a l   p re load   exe r t ed  by tendons, F 

FO ............. i n i t i a l   p r e l o a d   e x e r t e d  by tendons, Fo 

FT(1) .......... f o r c e   i n   t h e  ith tendon, Fi 

FTO(1) i n i t i a l   f o r c e   i n  ith tendon, Fo i ......... 
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I K  ............. number of  equally  spaced  points on beam at  which 
de f l ec t ions  are t o   b e  found 

IKK ............ i f  IKK = 2, then  appl ied  loading i s  symmetrical 
about x = L/2 

K .............. number of  increments  used  in  numerical   integrations 

KFTJDM1 ......... maximum number of  applied  load  increment  halvings 

KFUDM2 ......... maximum number of  occurrences  of  questionable  output 

KSMAX .......... maximum number of   s teps / loop   in  F  and 
d i rec t ions   in   the   so lu t ion   of   t endon  equat  P ons 

KTRYM .......... maximum number of  loops in   the  solut ion  of   tendon 
equations 

NIR(1) ......... number of e n t r i e s   i n   t a b l e  of W vs .  f between 
f = CP = D I S C  (1-1) and  DISC(1) 

NOREG .......... t o t a l  number of reg ions   c ross   sec t ion  i s  divided 
in to   depthwise   for   t ab le   o f  W vs.  f ( t h r e e   f o r  
I-beam) 

NSF ............ number o f   s ign i f i can t   f i gu res   fo r   t runca t ion   o f  
cracking  load 

NT ............. t o t a l  number of  tendons, n 

P E W  ......... maximum a l lowable   percent   in -out   e r ro t   in   the  
so lu t ion  of the  tendon  equations 

T .............. resul tant   bending moment app l i ed   t o  beam, T 

TABAL(1) ....... ith app l i ed   l oad   fo r   t ab l e  a t  end  of output 

TABCD(1) ....... ith c e n t r a l   d e f l e c t i o n   f o r   t a b l e  a t  end  of output 

TABCP(1) ....... ith crack   pene t r a t ion   fo r   t ab l e  of W vs .  f 

TABTL(1) ....... ith l e f t  end r o t a t i o n   f o r   t a b l e  a t  end  of output 

TABTR(1) ....... ith r i g h t  end r o t a t i o n   f o r   t a b l e  a t  end of  output 

TABW(1) ........ ith value of W f o r   t a b l e  of W vs .  f 

THETAL ......... l e f t  end r o t a t i o n ,  QL 

THETA0 ......... i n i t i a l  end r o t a t i o n ,  

THETAR ......... r i g h t  end r o t a t i o n ,  eR 
V .............. maximum value o f - W  along  the beam 
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W .............. v a r i a b l e ,  W = (M-$)/F, appear ing   in   c rack  

WCRACK ......... value  of W corresponding t o  inc ip ien t   c racking  

X .............. coordinate ,  x, measured  along  the  length  of  the 

pene t ra t ion   equat i  n 

beam 

XD ............. loca t ion ,  x where d e f l e c t i o n  is  being  determined 

YL ............. l e n t h  of  segmented beam, L 

YLT ............ length  of  tendons, Lt 

YMB ............ maximum applied  bending moment, Mmax 

YMT ............ tendon  st iffness  bending moment, % 

A’ 
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I 

PROGRAM LISTING 

C M A I N  PROGRAM - PRESTRESSED  SEGMENTED I BEAM W I T H   E L A S T I C  TENDONS,  PCH 
D I M E N S I O N   H O L L E R ( 1 2 ) , D I F X ( 2 0 0 )  
D IMENSION F T 0 ~ 1 0 ~ ~ E C T ~ 1 0 ~ ~ F T ~ l O ~ r S I G H A ( 1 0 ) . T A B A L ~ 1 O O ~ ~ T A B T L ( l O O ) ~  

l T A B T R (  1 0 0 ~ ~ D I S C ~ L O ~ r N I R ~ 1 0 ~ ~ T A ~ C P ~ 2 O O ~ ~ T A B ~ ~ 2 O O ~ ~ T A B C D ~ l ~ O ~  
COMMON Y M B I Y H T I F I F O I Y L T E B I X D I W ~ R A C K I N I I I C , I C ~ I B M D ~ I X S ~ D T O T ~ D C E N T ~ D I M ~  

F F T L  I 
F FTR I 
F F E C I  

45 WRITE  OUTPUT  TAPE 6.50 
50 FORMAT(55HlPRESTRESSED SEGMENTED I BEAM  WITH  ELASTIC TENDONS, P C H I  

WRITE  OUTPUT  TAPE  6.55 
55 FORMAT(119HODIMENSICNS - LENGTHS  ARE I N  INCHES,  LOADS ARE I N   K I P S ,  

1 BENDING MOMENTS ARE IN   INCH-K IPS,   STRESSES + MODULI ARE I N  K S I  1 
100 R E A D   I N P U T   T A P E   5 r L O l r H O L L E R  
L O 1  FORMAT ( 12A6 

READ  INPUT  TAPE ~ , ~ ~ ~ , Y L I E B , Y L T I E T I A T , P E R M A X , K , N T , N ~ R E G  
1 0 5   F O R M A T ( ~ F L O . O I ~ I S )  

READ  INPUT  TAPE 5 ~ l l O ~ ~ F T O ~ I l ~ E C T ~ I l ~ I ~ l ~ N T ~  
110 FORMAT(ZF10.01 

READ  INPUT TAPE 5 r l L 5 r D T O T r D C E N T r D I M l r D I M 2 r D I M 2 ~ D I M 3 ~ D I M 4  
READ  INPUT TAPE  59 1 1 5 ~ D I M 5 ~ O I M 6 ~ D I M 7 ~ 0 I M 8 ~ D I M 9 ~ D I M l O  

115 FORMAT(6F lO.O)  
READ  INPUT  TAPE 5 ~ l 2 0 r ( O I S C ( I ) r N I R ( I ~ ~ I ~ l ~ N O R E G l  

1 2 0  FORMAT (F10.6,  I51 
READ  INPUT  TAPE ~ ~ ~ ~ ~ ~ I K I I K K I N S F ~ A L D M B M ~ A L M A X ~ D A L  

1 2 7  FORMAT(   315 r3F10 .0 )  
READ  INPUT  TAPE S r l 2 8 , K T R Y M , K S M A X , K F U D M l , K F U D M 2  

1 2 8   F O R M A T ( 4 1 5 1  
WRITE OUTPUT  TAPE  6,130rHOLLER 

130 FORMAT ( l H O 1 1 2 A 6  1 
WRITE  OUTPUT  TAPE 6, 135,YL,EB,YLT,ET,AT 

135  FORMAT(15HOBEAM  LENGTH = p F 8 . 4 ~ 1 2 H  BEAM MOD = r F 1 0 . 2 r 1 7 H  TENOON L E  
lNGTH = ,F8.4,14H  TENDON MOD = rF lO.Z ,19H AREA PER TENDON = vF7.5) 

WRITE  OUTPUT  TAPE  6,14OrPERMAX,K 
140 FORMAT(75HOPERCENT  IN--OUT  DIFFERENCE IN PRESTRESS AND TENDOrrl MOMEN 

1 T  IS LESS  THAN OR =rF6.4 ,33H NO. INCREMENTS S.N I N T E G R A T I O N S   = * I 4 1  
WRITE  OUTPUr  TAPE  6r l45,NT,NOREG 

145   FORMAT( l8HONOo  OF TENDONS = ~ 1 2 , l B H  NO. OF REGIONS = , 1 2 1  
WRITE  OUTPUT  TAPE 6 r l 5 0 ~ D T O T ~ D C E N T ~ D I M l ~ D I M 2 ~ D I M 3 ~ D I M 4  

150 FORMAT(15HOTOTAL  OEPTH = r F 7 0 4 9 2 0 H   D I S T  TO CENTROIO = r F 7 0 4 r 8 H  DIM 
11 = * F 7 0 4 , 8 H   D I M 2  = r F 7 - 4 , B H   D I M 3  = r F 7 0 4 9 8 H   D I M 4  = rF7 .4 )  

WRITE  OUTPUT  TAPE 6 ~ 1 5 5 ~ D I M 5 ~ D I M 6 r D I M 7 ~ D I M 8 ~ 0 1 M 9 ~ D 1 M 1 0  
155   FORMATIBHODIM5 = r F 7 . 4 , 8 H   D I M 6  = r F 7 . 4 9 8 H   D I M 7  = rF7o4r8H D I M 8  = v 

l F 7 . 4 1 8 H   D I M 9  = r F 7 0 4 ~ 9 H   D I M 1 0  = r F 7 . 4 1  
WRITE  OUTPUT  TAPE 6 ~ 1 6 0 ~ I I ~ D I S C ~ I l ~ I ~ N I R ~ I ~ ~ I ~ l ~ N O R E G ~  

160 F O R M A T ( 6 H   D I S C ( , I 2 , 5 H  1 = q F 7 . 4 r 5 H   N I R ( r 1 2 r 5 H  1 = ,131  
SUP'ECT=O. 

99 



DO 165 I = l r N T  
165 SUMECT=SUHECT+ECT(I)  

ERRMAX=PERMAX/lOO* 
I xs=o 
I BH D=O 
W R I T E  = FH(O.0) 
W R I T E  = F I I 0 . 0 )  
I xs= 1 / IBMD=L 
XNT=NT 

RH=O. 

F T (  I )=FTO( I 1  
R=R+FTO( I )  

FO=R 
EC= RM/ R 
F= FO 

,,/' 
R=O 

DO 170 I = l r N T  

170 RM=RM+FTO( I) +ECT( I) 

W R I T E   O U T P U T   T A P E   6 t 1 7 5 ~ A L D M B M t A L M A X t D A L  
175 F O R M A l ( 3 5 H O ( A P P L I E D   L O A D ) / ( M A X   B E N D  MOMENT) =,F10.6r20H MAX A P P L I E  

LD LOAD = rFL0 .6 r29H  INCREMENT I N   A P P L I E D   L O A D  = rF10.6) 
WRITE  OUTPUT  TAPE 6 r 1 8 O r F t E C  

180 F O R M A T ( 2 7 H O I N I T I A L   P R E L O A D   I N   B E A M  = r F l O o 6 r 3 5 H   E C C E N T R I C I T Y  OF I N  
l I l I A L  PRELOAD = rF10.6) 

W R I T E   O U T P U T   T A P E   6 t 1 8 5 r I K t N S F  
185 FORMAT(18HODEFLECTIONS  AT l / r I 2 9 1 6 H  P O I N T S   O N   R E A M t r 2 8 H  ROUND O F F  

1CRACKING  LOAD TO r I l r 2 O H   S I G N I F I C A N T   F I G U R E S  1 
I F (  I K K - 2 )  1909 187r 190 

187 WRITE  OUTPUT  TAPE 69188 
188 FORMAT  (4OHOAPPL I E D   B E N D I N G  MOM  D I S T  IS SYMMETRICAL 1 
190 WRITE  OUTPUT  TAPE  6 t195 rKTRYMtKSMAX 
195  FORMAT(70HOFOR  DETERMINATION  OF  PRELOAD  AND  1ENDON MOMENT - MAX NO 

1. STEPS/LOOP = r I 2 r 1 6 H  MAX NO. LOOPS = r I 2 r 2 1 H  MAX NO, APPLIED  LOA 
2 D  1 

W R I T E   O U T P U T   T A P E   b r l 9 6 r K F U D M l r K F U D M 2  
196 FORMAT(21HOINCREMENT  HALVINGS =,12,44H M A X  NO. OCCURENCES  OF  QUEST 

LIONABLE  OUTPUT = t  1 2 )  
C T A B L E  OF TABW V S  TAeCP ( 2 0 0  THRU 2 9 9 )  

200 N I R l P L = N I R (  1 ) + 1  
DO .210 K 2 = l r N I R L P L  
T A R C P ( K 2 l t F L O A T F ( K 2 - l ) * D I S C (  l ) / F L O A T F   ( N I R (  1) 1 
XL=TABCP( K2 1 

WCRACK=lABW ( 1) 
N I R T = N I R (  1 )  

210 T A B W ( K 2 ) = E C + X 1 - D C E N T + F X ~ ~ X l ~ + F I ( X l ~ / ~ F A ( X l ~ ~ F X B ~ X l ~ ~  

I F ( N 0 R E G - 2 )  2 4 0 r 2 1 5 t 2 1 5  
215  DO 230 KL=2rNOREG 

100 



X 2 = D I S C ( K l ) - O I S C ( K 1 - 1 )  
N N N = N I R ( K l ) + l  

K 3 = N I R T + K 2  
T A D C P ( K 3 ) = D I S C ( K 1 - 1 ) + F L O A T F ~ K ~ ~ l ~ ~ X 2 / ~ L O A T F ~ ~ I R ~ K l ~ ~  
X l = T A B C P (   K 3  1 
T A B W ~ K 3 ) ~ E C + X l - C C E N T + F X ~ ~ X l ~ + F I ~ X l ~ / ~ F A ~ X l ~ . ~ F X B ~ X l ~ ~  

DO 220 K 2 = l r N N N  

2 20 CONT INU E 

230 CONTINUE 
240 N I = N I R T  

N I R T = N I H T + N I R ( K l )  

WMAX=TABW(NI+ l )  
245 WRITE  OUTPUT  TAPE  b r250rWCRACK 
250 FORMAT(9HlWCRACK  =pFlO.6) 

WRITE  OUTPUT  TAPE 69255 
255  F O R M A T ( l H O t L 3 X t 6 H   T A B C P t 1 4 X t S H   T A B W t f Z X t l l H   F I R S T   D I F F  1 

DI FX ( 1 ) = O - O  
N I P 2 = N I + 2  
DO 270 K 4 = 2 r N I P 2  
D I F X ( K 4 ) = T A B W ( K 4 ) - T A B W ( K 4 - 1 )  
K5=K4- 1 
WRITE  OUTPUT  TAPE 6 t 2 6 0 r K 5 r T A 6 C P ( K 5 ) V T A E U ( ~ 5 )  + D I F X ( K S )  

260 F O R M A T 1 1 5 r 3 F 2 0 - 8 )  
270 CONTINUE 

280 F T ( I ) = F T O (  I )  
DO 280 I = l t N T  

C T E N = Y L T / ( A T t E T )  
v=o 0 

Y MT=O 
HM=O 

X I K = I K  
I J K =   I K /   I K K  
KK=O 
KFUD=O 
x=o. 
T A B T L (   l ) = F I N T ( F T L I t K )  
T A B T R (   l ) = F I N T ( F T R I t K )  
TABAL(  1 ) = O m  

YHB=O- 

THETAO=TABTL( 1)  
THETAL=THETAO 
THETAR=THETAO 
WRITE  OUTPUT  TAPE 6.290 

290  FORMAT ( 1H1)  
WRITE  OUTPUT  TAPE  69295 tTHETAO 

295 FORMAT ( 1 0 H   T H E T A 0  = r F 1 2 - 8 1  
GO TO 400 

C R O U T I N E  FOR S E L E C T I N G   A P P L I E D   L O A D  (300 THRU 399) 
300 K K = K K + l  
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I F ( K K - 2 )   3 1 0 1 3 2 0 9 3 3 0  
310 YMB=WCRACK*FO 

YMBOLD=YMB 
GO TO 400 

ID=XFIXF(.43429448+LOGF(YMB*ALDMBM))-NSF+l 

SFYMB=ALD/ ALDMBM 
GO TO 400 

AL=ALD+DAL+FLOATF(KK-2)  
I F ( A L - A L H A X ~ 4 0 0 r 4 0 0 ~ 3 4 0  

3 4 0   W R I T E  OUTPUT  TAPE 6 9 3 4 5  
345   FORMAT( l fH1   APPLIEC  LOAD98X912H  CENTER  DEFL , lOX9 . l1H   THETA  LEFTVBX 

3 2 0  Y H B = ( ( F O + W C R A C K ) + ~ 2 ) / ( ( 2 o * F O - F ) + W C R A ~ K - Y ~ ~ )  

A L O ~ ( l O ~ * * I D ~ + F L O A T F ~ X F I X F ~ Y M B * A L D M B ~ / ~ l O o ~ * I D ~ ~ ~  

3 3 0  Y M B = S F Y M B + C A L * F L O A T F I K K - 2 ) / A L D M B M  

l r  12H THETA  RIGHT 1 
WRITE  OUTPUT  TAPE 6 9 3 5 0 , ( T A B A L I N ) r T A B C D ( N ) r T A B T L o r T A B T R ( N ) p N = l 9 M  

1 M  1 
3 5 0   F O R H A T ( 4 F 2 0 . 8 )  

WRITE  OUTPUT  TAPE  69355 
3 5 5  FORMAT ( 1 H 1 )  

GO TO 4 5  

400 AL=YMB*ALDMBM 
C ROUTINE FOR DETERMINING  PRESTRESS FORCE AND EIOMENT (400 THRU 499) 

T H E T A L = F I N T (   F T L   I , K )  
THETAR=FINT(  FTR1.K)  
I F ( E T * F L O A T F t K K  1 )  4109 5 0 0 9 4 1 0  

C  ET=O, FOR ZERO S T I F F N E S S  TENDONS 
4 10 CY MT=Y MTOL D 

YMT=YHTULD+YMB/YMBOLD 
F=FOLD+(YMB-YMT)/(YMBOLD-YMTOLD) 
DELF=(   F-FOLD) /Z .  
DELYMT=(YMT-YMTOLD)/2-  
KKFUD=O 
IF(ABSF(DELF/F)-ERRMAX)4Llrbl l t4119412 

411 DELF=2.+ERRMAX*F 
4 1 2  I F ( A B S F ( D E L Y M T ) - A B S F I Y M T + E R R M A X ) ) 4 1 3 9 4 1 3 ~ 4 1 4  
4 1 3  DELYMT=Zo+ERRMAX*YMT 
414 SF=DELF 

SYMT=DELYMT 
KS=O 
W R I T E   O U l P U T   T A P E   6 r 4 1 5 r A L  

415 FORMAT ( l 5 H O A P P L   I E D   L O A D   = 9 F 1 2 0  8) 
4 1 8  KTRY=O 

KALT=O 
WRITE  OUTPUT  TAPE  69419rYMT 

419 FORMAT(14H  HOLDING YMT = t F 1 2 . 8 )  
DFOLD=F 

425 F I N = F  
IF(KTRY-KTRYM142694269461 
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4 2 6   W L = ( Y H B + F H ( O . ) - Y W T ) / F  
CPL=FCP( WL 1 
WR=(YHB+FM(YL) -YHT) /F  

' CPR=FCP( WR 1 
T H E T A L = F I N T ( F T L I p K )  
I F t I K K - 2 )   4 2 8 9 4 2 7 9 4 2 8  

C I K K = Z  FOR SYMMETRICAL  LOADING9  FM(X)=FM( I "X)  
427 THETAR=THETAL 

GO T O  4 2 9  
428 T H E T A R = F I N T ( F T R I t K )  
429 R C O H P = F I N T ( F B C I 9 K )  

YHTOUT=O. 
2 1=( SUMECT+XNT+(  CPL-DCENT+FXB(  CPL 1 1 I *  (THETAL-THETA01 
Z2=(SUMECT+XNT+(CPR-DCENT+FXB(CPR)  1 ) * (THETAR-THETAO) 
FOUT=FO+~Zl+Z2)/(CTEN+XNT~BCOMP) 
DO 4 3 0   I = l r N T  
ZZl=(ECT(I)+CPL-DCENT+FXB(CPL1)*(~HETAL-THETAO1 
Z Z 2 = ( E C T ( I ) + C P R - O C E N T + F X B ( C P R ) ) + ( T H E 7 A R - T H E T A O )  
F T ( I ) = F T O (  I)+(ZZl+ZZ2-(F-FO)~BCOMP)/CT€N 

DF=FOUT-FIN 
430  YMTOUT=YMTCUT*FT( I I * (  ECT( I I - E C )  

4 3 5   V I N = ( Y M B - Y H T ) / F I N  
VOUT=(  YMB-YMTOUT 1 /FOUT 
W R I T E  OUTPUT TAPE 694389FIN9VINtFOUT9DF,YMTOUTIVOUTpVOUT 

4 3 8   F O R M A T l b H   F I N   = p F 1 2 o 8 r 6 H   V I N   = r F l O o 8 9 7 H  FOUT = r F 1 2 * 8 t 5 H  DF = t F 1 2 0 8  
1 t 9 H  YMTOUT = r F L 2 0 8 t 7 H  VOUT = t F l O o 8 )  

I F ( A B S F ( ( F O U T - F I N ) / F I N ) - E R R M A X )  4 5 0 r 4 5 0 9 4 4 0  
4 4 0   I F ( D F O L D * O F ) 4 4 5 t 4 5 0 r 4 4 2  
4 4 2  IF(ABSF(DFOLD)-ABSF(DF))443t448t448 
4 4 3   D E L F = - o 7 5 * D E L F  

GO T O  4 4 8  
4 4 5   D E L F = - D E L F / 2 .  
4 4 8   F = F - D E L  F 

DFCLD=  DF 
K T R Y = K T R Y + l  
GO T O  4 2 5  

4 5 0  IF(KTRY-KTRYM/3)451r452.452 
4 5 1   S F = S F / Z o  
4 5 2   D E L F = S F  

I F ( K S + K K - l ) 4 5 3 9 4 5 3 t 4 6 0  
453  DELYMT=YMTOUT/S 

Y M T = Y M T O U T / ( l , - 2 . * E R R M A X )  
GO T O  460 

4 5 5  I F ( K T R Y - K T R Y M / 3 ) 4 5 6 r 4 5 6 t 4 5 7  
456  SYCT=SYMT/2 .  
4 5 7  DELYMT=SYMT 

4 5 8   D E L F = (   F O U T - F ) / S .  
4150 K S = K S + l  

I F ( K S + K K - 2 ) 4 5 8 9 4 5 8 r 4 6 0  

I F ( K S - K S M A X ) 4 6 5 r 4 6 5 9 4 6 1  
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461 I F  ( KFUD-KFUDM 1) 462.4639 463 
4 6 2  DAL=Oo  S+DAL 

KK=2* (   KK-11 -2  
KK FUD= 1 

463 WRITE  OUTPUT  TAPE 61464 
464  FORMAT(63HOTHE  FOLLOWING  OUTPUT FOR T H I S  LOAD IS OF QUESTIONABLE A 

lCCURACY 1 
KFUD=KFUD+ l  
I F  ( KFUD-KFUDMZ 1500. 5 0 0 9 3 4 0  

4 6 5  I F ( A B S F ( ( F - F O U T ) / F ) - E R R M A X ) 4 6 6 9 4 6 6 p 4 7 C  
466 I F  (YMT  14679 4709 4 6 7  
4 6 7  IF(ABSF((YMT-YMTOUT)/YMT)-ERRMAX150O~5OO~470 
4 7 0   I F ( K A L T 1 4 1 8 r 4 7 3 r 4 1 8  
4 7 3  KTRY=O 

K A L T = l  
WRITE  OUTPUT  TAPE  69474.F 

4 7 4  FORMAT(  12H  HOLDING  F  =rF12.8)  
DYMTO=YMB 

480   YMTIN=YMT 
I F ( K T R Y - K T R Y M ) 4 8 1 r 4 8 l r 4 6 1  

4 8 1   W L = ( Y M B * F M ( O . I - Y M T ) / F  
CPL=FCP(WL)  
WR=(YMB*FM(YL) -YMT) /F  
CPR=FCP( WR 1 
T H E T A L = F I N T ( F T L I r K )  
IF( I K K - 2 )   4 8 3 9 4 8 2 , 4 8 3  

C I K K = 2  FOR SYMMETRICAL  LOADING,   FM(X)=FM(L-XI  
482  THETAR=THETAL 

GO TO 4 8 4  
4 8 3   T H E T A R = F I N T ( F T R I 9 K )  
4 8 4   B C O M P = F I N T   ( F B C I  r K  1 

YMTOUT=O. 
Z l = ( S U M E C T + X N T * ( C P L - D C E N T + F X B ( C P L ) ) ) ~ ( T H € T & L - T H E T A O )  
22=(  SUMECT+XNT*(  CPR-DCENT+FXB(  CPR) 1 I * (  THETAR-THETAO) 
F O U T = F O + ( Z l + Z 2 ) / ( C T E N + X N T * B C O M P )  

Z Z l = ( E C T ( I ) + C P L - D C E N T + F X B ( C P L ) ) + ( T H E T A L - T H ~ T A O )  
ZZ2=(ECT(I)+CPR-DCENT+FXB(CPR))*(THETAR-THETAO) 
F T ( I ) = F T O (  I ) + ( Z Z l + Z Z 2 - ( F - F O ) * B C O M P ) / C T E N  

DO 485  1 -19  NT 

4 8 5   Y M T O U T = Y M T O U T + F T (   I ) * ( E C T (  I 1 - E C )  
DYMT=YMTOUT-YMTIN 

490 V I N = ( Y M B - Y H T I N ) / F  
VOUT=(YMB-YHTOUT)/FOUT 
WRITE  OUTPUT  TAPE ~ ~ ~ ~ ~ ~ Y M T I N ~ V I N ~ Y M T O U T T D Y ! ~ T V F O U T V O U T  

4 9 2   F O R M A T ( 8 H   Y M T I N   = T F 1 2 . 8 9 6 H   V I N   = * F l C . 8 r 9 H  YMTOUT = r F 1 2 . 8 9 7 H  DYMT = 
l r F 1 2 . 8 9 7 H  FOUT = r F l 2 . 8 r 7 H  VOUT = r F l O 1 8 )  

I F ( A R S F ( ( Y M T O U T - Y M T I N ) / Y M T I N ) ” A X )  4 5 5 9 4 5 5 ~ 4 9 3  
4 9 3  I F ( D Y M T O * D Y M T ) 4 9 6 r 4 5 5 r 4 9 4  
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4 9 4  IF(ABSF(CYMTO)-ABSF(DYMT) 1 4 9 5 ~ 4 9 9 , 4 9 9  
495  DELYMT=-.75+DELYMl 

GO TO 499 
496 DELYMT=-CELYHT/2. 
499 YMT=YMT+DELYMT 

DYMTO=DYMl 
KTRY=KTRY+ l  
GO TO 4 8 0  

C ROUTINE F O R  DETERMINING TENDON  STRESSES + B E A M   D E F L o   ( 5 0 0 - T O   5 9 9 )  
5 0 0   I F ( K K - 1 ) 5 0 5 * 5 9 0 * 5 0 5  
505 AC=ALDMBM+YMB 

WRITE  OUTPUT  TAPE 6 r 5 1 0 * A L ~ Y M B * F  
510  FORMAT416HOAPPLIED  LOAD = , F l 2 - 8 r 3 X * 2 4 H  MAX APPLIED  BEND MOM = ,Fl 

12.8,3X*25H  TOTAL  PRELOAD I N  BEAM = t F I . 2 0 6 )  
DF=  F-FOUT 
DYPT=YMT-YMTOUT 
V = ( Y H B - Y M T ) / F  
WRITE  OUTPUT  TAPE  6 r515rDFqYf lT tDYMT1V 

5 1 5   F O R M A T ( 7 H   D I F F   = * F l 2 . 8 , 3 X * 2 1 H  TENDON BENDING MOM = r F 1 2 o 8 t 3 X t l H  D l  
1 F F   = r F 1 2 - 8 p 3 X t 5 P  V = t F L 2 . 8 )  

WRITE  OUTPUT  TAPE  6*517*THETAL*THETAR 
5 1 7   F O R M A T l 2 O H O L E F T  END R O T A T I O N   = ~ F l 2 . 8 r 2 2 H   R I G H T  END ROTATION = r F l 2 .  

1 8  1 
WRITE  OUTPUT  TAPE  6,520 

5 2 0   F O R M A T 1 3 0 H O I N I T I A L  TENDON  ECCENTRICITY  ' r13H TENOON F O R C E t 7 X t 1 4 H  T 
LENDON  STRESS 1 

5 3 0  S I G M A (  I ) = F T (  [ ) / A T  
DO 5 3 0  I = l * N T  

WRITE  OUTPUT  TAPE 6 r 5 4 O r ~ E C T ( I ) r F T ( I ~ ) t S I G M A ( I ~ ~ t I ~ l t N T )  
5 4 0   F O R M A T ( F 2 0 . 8 r 7 X ~ 2 F 2 0 . 8 )  

MM=MM+ 1 
TARAL( M M ) = A L  
TARTLl   MMI=THETAC 
TARTR(  " )=THETAR 
WRITE  OUTPUT  TAPE  6,550 

550 F O R M A T ( l H O * 2 2 X * 6 H   X D / Y L t B X * l l H   D E F L E C T I O N p S X t 1 7 H C R A C K   P E N E T R A T I O N )  
DO 570 I J = l r I J K  
XIJ=IJ  
X D = Y L * X I J / X I K  

WXD=fYMB*FH(XD)-YMT) /F  
CPXD=FCP(WXDI 

D E L T A = F I N T l F D I r K )  

I F ( X I J / X I K - . 5 )   5 6 0 ~ 5 5 5 t 5 6 0  
555 TABCD(  MH)=DELTA 
5 6 0   W R I T E  OUTPUT T A P E   6 r 5 6 5 r I J ~ I K . O E L T A t C P X O  
5 6 5   F O R M A T ( 2 3 X , I 2 r Z H  / ~ 1 2 ~ 5 X t l P E 1 5 ~ 8 r l O X ~ O ~ F 1 0 ~ 6 ~  
5 7 0  CONTINUE 

580 FORMAT t 1 H  / / / / / I  1 
WRITE OUTPUT TAPE 6,580 
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IF( KKFU0-1159Or 5959 595 
590 FOLD=F 

YMTOLD-YMT 
YMBGLO=YMB 

END 
595 IF(MM-100)300r340r340 
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CFCP  CRACK  PENETRATION  AS A FUNCTION  OF k: USING  TABULATED  VALUES,  PCH 
FUNCTION  FCP ( W 1 
D I M E N S I O N  F T O ~ l O ) ~ E C T ~ 1 0 ~ ~ F T ~ 1 O ~ ~ S I G M A ~ l O ~ ~ T A B A L ( 1 O O ~ ~ T A B T L ~ l O O ~ ~  

1 T A B T R ~ l 0 0 ~ ~ D I S C ~ 1 0 ~ ~ N I R ~ l O ~ ~ T A B C P ~ 2 ~ G ~ ~ ~ A B W ~ 2 O O ~ ~ T A B C D ~ l O O ~  
COKMON Y M B ~ Y M T ~ F ~ F O ~ Y L ~ E B ~ X D ~ W C R A C K ~ ~ I ~ I C ~ I ~ B ~ D ~ I % S ~ D T O T ~ D C E N T ~ D I M l  
l ~ D I M 2 ~ D I M 3 ~ D I M 4 ~ D I M 5 ~ D I M 6 ~ D I M 7 ~ D I M 8 ~ D I M 9 ~ D I M l O ~ D I S C ~ T A B C P ~ T A 6 W ~ E C  

10 

20 

2 5  

26 

30 

40 

so 

60 
70 
80 

100 

C FA 

IFIW-WCRACK) 10110120 
FCP=O. 
GO TO 100 
KLOW=l 
K H I G H = N I + l  

FCP=DTOT 
I F [ W - T A B W ( K H I G H ) ) ~ O ~ ~ O W ~ ~  

WRITE  OUTPUT  TAPE 6.26 
FORMAT(38HOW  GREATER  THAN WMAXI SETTING  FCPZDTOT 1 / /  1 
GO T O  100 
K M I O = K L O W + ( K H I G H - K L O W ) / 2  

KHIGH=KMID 
GO T O  7 0  
FCP=TABCP(KMID)  
G O   T O  LOO 
KLCW=KMID 

S L O P E = ( T A E C P ( K H I G H ) - T A E C P ~ K L O W )  ) / (TAEk(KHIGH) -TABW(KLOW)  1 
F C P = T A E C P ( K L O W ) + ( W - T A E W ( K L O W ) ) * S L O P E  
RETURN 
END 

I F ( W - T A B W ( K M I D ) )  40950960 

I F (  K H I  GH-KLOW-1) 809 809 30 

I BEAM  CROSS SECTIONAL AREA  AS A FUNCTION  OF  CRACK  PENETRATIONvPCH 
F U N C T I O N   F A ( C P 1  
D I P E N S I O N  F 1 0 ~ 1 0 ~ ~ E C T ~ 1 0 ~ r F T ~ 1 O ~ ~ S I G M A ~ l O ~ ~ T A B A L ~ 1 O O ~ ~ T A E T L ~ l O O ~ ~  

1 T A B T R ~ 1 0 0 ~ ~ O I S C ~ 1 0 l ~ N I R ~ l O ~ ~ T A E C P ~ Z O O ~ ~ T A B W ~ 2 O O ~ ~ T A B C D ~ l O O ~  
COMMON Y M E ~ Y M T ~ F I F O ~ Y L ~ E B ~ X D ~ W C ~ A C K ~ N I ~ I C ~ I B M D ~ I X S ~ D T O T ~ D C E N T ~ B ~ T W  

L ~ D ~ T F ~ D I M S ~ D I M 6 ~ D I M 7 ~ D I M 9 r D I M L O I D I M 9 ~ D I M L O ~ O I S C ~ T A B C P ~ T A E W ~ E C  
I F ( C P - T F )  10*10120 

10 FAZE*(  TF-CP)  +D*TW+E*TF 
GO TO 50 

20 I F ( C P - T F - 0 )   3 0 9 3 0 r 4 C  
30 F A = ( D + T F - C P ) * T W t E * T F  

GO T O  50  
40 F A = (  2. *TF+C-CP 1 *E 
50 I F (  I X S )  70r60170 
60 WRITE  OUTPUT  TAPE 6.65 
65 FORMAT ( 3 3 F O I  BEAM  AREA FUNCTION I N  PROGRAM 1 
70 RETUKN 

END 
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CFXB I BEAM CENTROID  OISTANCE FROM  CRACK V S  CRACK  PENETRATION.  PCH 
FUNCTION  FXB(CP1 
D IMENSION F T 0 ~ 1 0 ~ ~ E C T ~ 1 0 ~ ~ F T ~ 1 O ~ ~ S I G ~ A ~ l O ~ ~ T ~ ~ A L ~ 1 O O ~ ~ T A B T L ~ l O O ~ ~  

1 T A B T R ~ 1 0 0 l ~ O 1 S C ~ 1 0 ~ ~ N I R ~ 1 0 ~ ~ T A B C P ~ 2 0 0 l r ~ A B W - ~ 2 0 0 ~ ~ ~ A B C O ~ 1 0 0 ~  
COMMON Y H B ~ Y M T I F I F O I Y ~ ~ E B ~ X D , W C R A C K I N I I I C I I B M D I I X S , D T O T ~ D C E N T , B ~ T W  
1 ~ D ~ T F ~ D I M 5 ~ D I M 6 ~ D I M 7 ~ D I M 8 , D I M 9 ~ D I M l O ~ D I S C ~ T A B C P ~ T A B W ~ E C  

I F I C P - T F )  10110120 
10 T O P ~ O ~ 5 ~ B ~ ~ T F ~ C P ~ ~ ~ 2 + O * T W * ~ T F ~ C P + O ~ 5 ~ O ~ + B ~ T F * ~ l o 5 * T F ~ C P + D ~  

FXB=TOP/FA(  CP 1 
GO TO 50 

20 I F  ( C P - T F - 0 )   3 0 , 3 0 9 4 0  
3 0 ' T O P = O o 5 * T W * ( D + T F - C P ~ * * 2 + B * T F * ( D + l o 5 * T F - C P )  

FXB=TOP/FA( CP 1 
GO TO 50 

40 F X B = ( 2 0 * T F t D - C P ) / 2 .  
5 0   I F ( I X S 1  70160r70 
60 WRITE  OUTPUT  TAPE  6.65 
6 5  FORMAT ( 3 7 H O I  BEAM  CENTROID  FUNCTION I N  PROGRAM 1 
70 RETURN 

EN0 

C F I  I BEAM MOMENT OF I N E R T I A  A S  A FUNCTION OF CRACK  PENETRATION,  PCH 
F U N C T I O N   F I f C P )  
D IMENSION F T 0 ~ 1 0 1 ~ E C T ~ 1 0 ~ ~ F T ~ 1 O ~ r S I G M A ~ l O ~ ~ T A B A L ~ 1 O O ~ ~ T A B T L ~ l O O ~ ~  

1 T A B T R ~ 1 0 0 ~ ~ D I S C ~ 1 0 ~ ~ N I R ~ l O ~ ~ T A B C P ~ 2 O O ~ ~ T A 6 W ~ 2 O O ~ ~ T A B C D ~ l O O ~  
COMMON Y M B I Y M T I F I F O , Y L I E B ~ X D I W C R A C K I N I I I C I I B H D I I X S , D T O T , D C E N T ~ B , T W  

l ~ O ~ T F , D I M 5 ~ O I H 6 ~ D I H 7 ~ D I M 8 ~ D I M 9 ~ D I M l O ~ D I S C ~ T A ~ C P ~ T A B W ~ E C  
I F ( C P - T F )   1 0 1 1 0 1 2 0  

10 F I = ( B + ( T F - C P ) ~ * 3 + T W * O * t 3 + 6 t T F * ~ 3 ) / 1 2 . + B t ( l F - C P ) t ( F X B ( C P ) - O . 5 t ( i F -  
1 C P )  ) ~ ~ 2 + D + T W + ( F X B ( C P ) - T F + C P - O o 5 ~ D ) t * 2 + B ~ T F ~ ( ~ + l o 5 ~ T F - F X B ( C P ) - C P ) t *  
22 

GO T O  5 0  
20 I F ( C P - T F - D )   3 0 r 3 0 r 4 0  
3 0  F I = ( T W * ( T F + D - C P ) t + 3 + B , T F + t 3 ) / 1 2 . + T W t ( D + T W ~ ( D + T F - C P ) t ( F X B ( C P ) - O . 5 t ( D t T F -  

l C P ) 1 * * 2 + B * T F + ( D + l . 5 . T F - F X B O - t P ) r , 2  
GO T O  5 0  

40 F I = ( B t ( 2 o t T F + D - C P ) + t 3 ) / 1 2 .  
50  I F ( I X S )  80r60r80 
60 WRITE  OUTPUT  TAPE 6 r 6 5  
6 5  FORMAT ( 4 6 H O I  BEAM MOMENT OF I N E R T I A   F U N C T I O N   I N  PROGRAM 1 

WRITE  OUTPUT  TAPE  6,70,BrTF.D*TW 
70  FORMAT (16HOFLANGE  WIDTH = r F 7 0 4 , 1 6 H   F L A N G E   T H I C K  = r F 7 0 4 1 1 3 H  WEB 

l D E P T H  = r F 7 0 4 9 1 3 H  WEB THICK = r F 7 . 4 )  
80 RETURN 

END 
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CFINT  S IMPSONS 1/3 RULE FOR NUMERICAL  INTEGRATION  PCH 
F U N C T I O N   F I N T ( F C U M t K 1  
D IMENSION F T O ~ L O ~ t E C T ~ 1 O ~ ~ F T ~ 1 O ~ t S I G ~ A ~ l ~ ~ t T A B A L ~ 1 O O ~ t T A B T L ~ l O O ~ t  

1 T A B T R ~ 1 0 0 1 ~ D I S C ~ l O ~ ~ N I R ~ l O ~ ~ T A B C P ~ 2 O O ~ ~ T A B W ~ 2 O O ~ t T A B C D ~ l O O ~ ~  
COMMON Y M B ~ Y M T ~ F ~ F O ~ Y L ~ E B ~ X D ~ W C R A C K ~ ~ I ~ I C ~ I ~ B M ~ t I X S t D T O T t D C E N ~ ~ D I M l  
l ~ D I M 2 ~ D I M 3 ~ D I M 4 ~ D P M 5 ~ D I M 6 ~ D I M 7 ~ D I M 8 t D I M 9 t D I ~ M l O t D I S C t T A B C P t T A B W t ~ E C ~  

I l z K - 1  
I 2 = K - 2  
XK=K 
F I N T L = O -  
F I N T 2 z O .  
DO 10 I = L t I l r 2  
XI=I 
X = X I + Y L / X K  

10 F I N T l = F I N T l + F D U M ( X )  
DO 2 0  I = 2 t I 2 t 2  
XI=I 
X=X I *Y L / X K  

20 F I N T Z = F I N T Z + F D U M ( X )  
A l = F D U M I O - O )  
A2=FDUM(YL 1 

RETURN 
END 

FINT=(YL/(3.*XK))*(Al+4.+FINTl+2o*FINT2+A2I 

C F T L I   F U N C T I O N  FOR THETA LEFT  INTEGRAL  PCH 
FUNCTION  FTL I . (X )  
D IMENSION F T 0 ~ 1 0 ~ ~ E C T ~ 1 0 ~ ~ F T ~ 1 O ~ ~ S I G ~ A ~ l O ~ t T ~ B A L ~ 1 O O ~ t T A B T L ~ l O O ~ t  

1 T A B T R ~ 1 0 0 ~ ~ D I S C ( 1 0 ) ~ N I R ( l O ~ ~ T A B C P ~ Z O O ~ t ~ A E W ~ 2 O O ~ t T A B C D ~ ~ O O ~  
COMMON Y M B ~ Y M T ~ F ~ F O ~ Y L ~ E B ~ X D ~ W C R A C K ~ N I ~ I C ~ I ~ ~ M D t I X S t O T O T t D C E N T t D I M l  
l ~ D I M 2 t D I M 3 t D I M 4 ~ D I M 5 t D I M 6 ~ D I M 7 ~ D I M 8 t D I M 9 ~ O I ~ M l O t D I S C t T A ~ C P t T A B ~ t E C  

W=(YMB*FM(X) -YMT) /F  
CP=FCP(W) 
T=F*(W-EC-CP+DCENT-FXB( CP 1 )  
F T L I = T + ( Y L - X ) / ( Y L * E B + F I o  1 
RETURN 
END 

C F T R I   F U N C T I O N  FOR THETA  RIGHT  INTEGRAL PC H 
F U N C T I O N   F T R I t X )  
D IMENSION F T 0 ~ 1 0 ~ ~ E C T ~ 1 0 ~ t F T ~ 1 O ~ ~ S I G N A ( L O ~ t T A B A L ~ l O O ~ t T A B T L ~ l O O ~ ~  

1 T A B T R ~ 1 0 0 ~ t D I S C ~ 1 0 ~ ~ N I R ~ l O ~ ~ T A B ~ P ~ ~ O O ~ t ~ A 8 W ~ 2 O O ~ ~ T A B C D ~ l O O ~  
COMMON Y M B ~ Y M T ~ F ~ F O ~ Y L ~ E B ~ X D ~ W C R A C K ~ N I ~ I C ~ I B M ~ ~ I X S t D T O T t D C E N T ~ D I M l  
L ~ D I M 2 ~ D I H 3 t D L M 4 ~ D I M 5 ~ D ~ M 6 ~ D I M 7 ~ D I M 8 ~ D I M 9 ~ D L M l O t D I S C ~ T A B C P t T A B ~ t E C  

W=(YMB*FM(X)-YMT)/F 
CP=FCP ( W 1 
T = F * ( W - E C - C P + D C E N T - F X B O  1 
F T R I = T * X / ( Y L * E B + F I ( C P ) )  
RETURN 
END 
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C F B C I   F U N C T I O N  FOR  BEAM  CGMPRESSION  INTEGRAL  PCH 
F U N C T I O N   F B C I  ( X )  
D I M E N S I O N  F T 0 ~ 1 0 ~ ~ E C T ~ 1 0 l t F T ~ 1 O ~ t S I G ~ A ~ l O ~ t . T ~ ~ A L ~ l O O ~ t T A B T L ~ l O O ~ t  
1 T A B T R ~ 1 0 0 ~ ~ D I S C ~ 1 0 ~ ~ N I R ~ l O ~ ~ T A B C P ~ 2 O O ~ t ~ A B ~ ~ 2 O O ~ t T A B C D ~ l O O ~  

COMMON Y M B ~ Y M T ~ F ~ F O ~ Y L ~ E B ~ X D t W C R A C K t N I ~ I ~ ~ I E M ~ t I X S t D T O ~ t D C E N T ~ D I M l  

W=(YMB*FM(X) -YMT) /F  
CP=FCP ( W  1 

RETURN 
END 

l ~ D I M 2 ~ D I M 3 ~ D I M 4 ~ D I H S , D i ” 7 r D I M 7 ~ D I M 8 t ~ I M 9 t D I . M l O ~ D I S C t T A ~ C ~ ~ T A ~ ~ ~ E C  

F B C I = l . / ( E B + F A ( C P ) )  

CFDI   FUNCTION FOR D E F L E C T I O N   ( D E L T A )   I N T E G R A L  PCH 
F U N C T I O N   F D I ( X )  
D IMENSION F T 0 ~ 1 0 1 ~ E C T ~ l O ~ ~ F T ~ 1 O ~ t S I G M A ~ l O ~ ~ T ~ ~ A L ~ 1 O O ~ ~ T A B T L ~ l O O ~ ~  

1 T A B T R ~ 1 0 0 ~ ~ D 1 S C ( 1 0 ~ ~ N I R ~ l O ~ ~ T A B C P ~ 2 O O ~ ~ T A B ~ ~ 2 O O ~ ~ T A B C D ~ l O O ~  
COMMON Y M B ~ Y M T ~ F ~ F O ~ Y L ~ E B ~ X D t W C R A C ~ t N I t I C t I E M D t I X S t D ~ O T ~ D C E N T ~ D I M l  
l ~ D I M 2 ~ D I M 3 ~ D I M 4 ~ O I M S ~ D I M 6 ~ D I M 7 ~ D I M 8 ~ O I M 9 t D I M l O ~ D I S C t T A B C P ~ J A B W ~ E C  

W=(YHB*FMIX) -YMT) /F  

T=F*(  W-EC-CP+DCENT-FXB(CP 1 1 
CP=FCP ( W 1 

G = T / ( E B + F I ( C P ) )  

10 FDI=G*X* (  YL-XD‘) /YL 

20 F D I = G * X D * ( Y L - X ) / Y L  
30 RETURN 

END 

I F ( X - X O )  109 1 0 9 2 0  

GO TO 30 

C F M  UNIFORM  BENDING MOMENT D I S T R I B U T I O N  P CH 
FUNCTION FM(X) 
DIMENSION F T 0 ~ 1 0 ~ ~ E C T ~ l O ~ ~ F T ~ 1 O ~ t S I G ~ A ~ l O ~ ~ T A B A L ~ l O O ~ ~ T A B T l ~ l O O ~ ~  

1 T A B f R ~ 1 0 0 ~ ~ O I S C ~ 1 0 ~ t N I R ~ l O ~ t T A B C P ~ 2 O O ~ ~ ~ A ~ ~ ~ 2 O O ~ t T A E C D ~ l O O ~  
COMMON Y M B ~ Y M T ~ F ~ F O ~ Y L ~ E B t X D t W C R A C K ~ N I ~ I C ~ I B H D t I X S ~ D T O T ~ D C E N T ~ D I ~ l  

1 ~ D I M 2 ~ D I M 3 ~ D I M 4 t D I M 5 t D ~ M 6 ~ D I M 7 ~ D I M 8 ~ D I M 9 t D ~ I M l O t D I S C ~ T A B C P ~ T A B W ~ E C  
RULES=X 
F M = l - O  
I F ( I 8 M D )   2 0 9 1 0 1 2 0  

LO WRITE  OUTPUT  TAPE  6915 
15 FORMAT (38HOTERMINAL  COUPLES9 C 9 MAX MOMENT = C 1 
20 RETURN 

END 
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SAMPLE INPUT 

GLASS I BEAM WITH 6 E L A S T I C  TENDONS UNDER  TERMINAL  COUPLESS PCH 
38 10500. 38 . 30000. -0123 - 1  50 6 3 

2 .  le33 
2. 1.33 
2. 0. 
2. 0. 
2. -1.33 
2. -1.33 
4. 2. 0 5  
0. 0. 0. 

05 30 
3 *5 40 
4. 30 
4 2 3 1. 

25 10 5 5 

2. 
0. 

3. 
C. 

.5 
0. 

15. 50 



SAMPLE OUTPUT 

PRESTRESSED SEGMENTED I BEAM H I T P   E L A S T I C  TENCONS,  PCH 

D I F E N S I O N S  - LEYSTHS ARE IN INCHES,  LOADS ARF IN YIPS,   BENDIYG MOMENTS ARE I N  INCH-KIPS,  STRESSES + MODULI ARE I N  K S I  

GLASS I BEAM h I T H  6 E L A S T I C  TENDCNS  UNDER TERCINAL  COUPLES, PCH 

BEAM LENGTH = 38.0000 BEAM MCD = 1 0 5 0 0 . 0 0  TENCON LENGTH = 38.0000 TENDON MOD = 30000.00  AREA  PER  TENDON = 0.01230 

PERCENT  IN-OUT  DIFFERENCE I N  PRESTRESS AND TEYDON MOMENT I S  LESS  THAN OR =0.1000 YO. INCREMENTS I N  INTEGRATIONS = 50 

NO. OF TENDONS = 6 NO. OF  REGIONS = 3 

TOTAL DEPTH = 4.0000 D I S T  T O  CENTROID = 2.0000 C I M L  = 2.0000 D I M 2  = 0.5000 D I M 3  = 3 .0000   D IM4  = 0.5000 

D I M 5  = 0. D I M 6  = 0. D I C ?  = 0. CIMB = 0. D I M 9  = 0. D I M 1 0  = 0. 
D I S C I  1 1 = 0.5000 N I R I  1 1 = 30 
D I S C (  2 ) = 3.5000 N I R (  2 I = 40 
D I S C I  3 1 5 4.0000 N I R (  3 1 = 30 

w 
10 TERMINAL CDUPLE;S, C M A X  MOMENT = C 

I BEAM  AREA FUNCTION I N  PROGRAM 

I BEAM  CENTROID  FUNCTION I N  PROGRAM 

I BEAM  MDFENT U F   I N E R T I A   F U N C T I O N   I N  PROGRAM 

FLA-NGE  WIDTH = 2.0000 FLANGE  THICK = 0.5000 WEB DEPTH = 3.0000 WEB THICK = 0.5000 

( A P P L I E D   L O A D ) / ( M A X  BEND POMENTI = 1.000000 M A X  APPLIED  LOAD = 15.000000 INCREMENT I N   A P P L I E D  LOAD = 0.500000 

I N I T I A L  PRELOAD I N  BEAM = 12.000000 ECCENTRICITY OF I N I T I A L  PRELOAD = -0. 

DEFLECTIONS  AT I/ 4 P O I N T S  ON BEAM, ROUNC OFF  CRACKING  LOAD TO 3 S I G N I F I C A N T   F I G U R E S  

APPLIED  BENDINC MOM D I S T  I S  SYMMETRICAL 

FOR  DETERMINATION OF  PRELOAD AND TENDON MOMENT - MAX NO. STEPS/LOOP =25 MAX NO. LOOPS =10 MAX NO. APPLIED  LOAD 

INCREMENT  HALVINGS = 5 M A X  NO. OCCURENCES  OF QUESTIONABLE  OUTPUT = 5 



WCRACK * 1.041667 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

38 

PABCP 
0. 
0.01666667 
0.03333333 
0~05000000 
0.06666666 
0.08333333 
0.09999999 
0.11666666 
0.13333333 
0~15000000 
0. 16666666 
0.18333333 
0.20000000 
0.21666666 
0.23333333 
0.25000000 
0.26666667 
0128333333 
0~30000000 
0031666666 
0.33333333 
0034999999 
0036646666 
0.38333333 
0~40000000 
0.41666666 
0.43333333 
0.45000000 
0.46666666 
0048333333 
0~50000000 
0057500000 
0.65000000 
0.72499999 
0.80000000 
0.87500000 
0.95000000 
1.02499999 
1,009999999 
lo17500000 
1.25000000 
1.32499999 
1,39999999 
1.47499999 
1.54999998 
1 062500000 
1.69999999 
lo77499999 
1 84999999 
1.92499998 

TA BH 
1.04166666 
1.05029832 
1.05883005 
1.06725861 
1.07558069 
1.08379292 

1,09987406 
1.10773592 

1.09189187 

1.11547388 
1. 12308426 
1.13056338 
1.13790745 
l o  145  11262 
lo15217508 
1.15909091 
1.16585602 

1,17891827 
1, 17246653 

1018520723 
1.19132915 
1.19727989 

1,20865084 
l o  20305520 

1.2 1406247 
lo21928577 
1,2243 1642 
1.22914998 

1,23820829 
1,24242422 
1,26084441 
1,2791  1845 
1.29724148 

1.33301473 
1.35065430 

1.38541155 
1.40251730 

1.23378208 

1.31520861 

1.36812186 

1.41943291 
lo43615174 
lo45266713 
1.4689720 1 
1.48505914 

1.51655009 
lo50092110 

1.53193827 
1.54707755 
1.56195973 

F I R S T  D I F F  
0. 
0.00863166 
0,00853173 
0.00842856 
0.00832208 
0.00821224 
0.00809895 
0.00798219 

0.00773796 

0.00747912 

0.  007861  85 

0.00761038 

0.00734407 
0.00720517 
0.00706246 
0.00691582 

0.00661051 
0.00645174 
0.00628896 

0.00595073 

Oo00676511 

0.00612192 

0.00577532 
0.00559564 
Oo00541162 
0.00522330 
0.00503065 
0.00483356 

0000442621 
0.004632  10 

Oo00421593 
0.01842019 
0.01827404 
0.01812303 
0.01796713 
0.01780611 

0.01 746756 

0.01710576 

0.01671883 

0.01763958 

0.01728968 

0*01691560 

0-01651539 
Oo01630488 
0.01608713 
0.01586196 
0,01562899 
0.01538818 
0.01513928 
OoOl.488218 
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51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 

90 
91 
92 
93 
94 
95 
96 
97 

99 
100 
101 

a9 

98 

2.00000000 
2.07499999 
2.14999998 
2.22499996 
2.29999998 
2.37500000 
2.44999999 
2.52499998 

2.67499998 
2.59999996 

2.75000000 
2 82499999 
2.89999998 
2.97499996 
3.04999998 
3.312500000 
3.19999999 
3.27499998 
3.34999996 
3 -42499998 
3.50000000 
3.51666665 
3.53333333 
3 54999998 
3.56666666 
3.58333331 
3 . 59999  999 
3.61666664 
3.63333333 
3.64999998 
3.66646666 
3.68333331 
3.69999999 
3.71666664 
3.73333332 
3.75000000 
3.76666665 
3.78333333 
3 . 79999998 
3 81666666 
3.83333331 
3.84999999 
3 86666664 
3.88333333 
3.89999998 
3.91666666 
3.93333331 
3 . 94999999 
3.96666664 
3.98333332 
4~00000000 

1057657656 
1.59091975 
1.60498123 
1.61875317 
1.63222833 
1. 64540029 
1.65826389 
1. 6708  1594 
1.68305604 
1069498783 
1.70662099 
1. 7 1797386 
1.72907796 
1.73998486 
1 750777 1 1  
1.76158775 
1.77263463 
1.78428653 
1.79720080 
1.81264159 
1.83333333 

1.84444444 
1.83888887 

1.84999998 
1.85555555 
1.86111109 
1 86666666 
1. 87222220 
1.83777777 
1.88333331 
1.88888888 
1.89444442 
1.89999999 
1.90555553 
1.91111110 
1091666666 
1.92222221 
1.92777777 
1.93333332 
1.93888888 
1.94444443 
1. 94999999 
1.95555554 
1.96111110 
1.96666665 
1.97222221 
1.97777776 
1.98333332 
1.98888887 
1.99444443 
2.00000000 

Om01461683 
Om01434319 
0.01406148 
Om01377194 
OmO134151-6 
0-01317196 
0.01286361 
0-01255205 
0.01224010 
0101193179 
0.01163316 
0.01135287 
0.01110412 

0.01079226 
0.01090688 

0-01081064 
0.01104687 
0.01165190 
0.01291427 
0.01544079 
0-02069174 
0.00555554 
0.00555557 
0.00555554 
0. 00555557 
0- 00555554 
0.00555557 
0.00555554 
0.00555557 
0100555554 
0.00555557 
0.00555554 
0100555557 
0.00555554 
0. 00555557 
0.00555556 
0.00555556 
0.00555556 
0.00555556 
0.00555556 
0.00555556 
0.00555556 
0.00555556 
0100555556 
0.00555556 
0.00555556 
0.00555556 
0.00555556 
0.00555556 
0.00555556 
0.00555557 
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THETA0 = -0. 

APPLIEO  LOAD = 0. M A X  APPLIED BEND MCM = 0. TOTAL  PRELOAD I N  BEAM = 12.00000000 
D I F F  = 12oOOOOOOOO TENDON BENCING MOM 0. D I F F  = 0 .  v = 0. 

LEFT END ROTATION = -0. .- RIGHT ENC ROTATION = -0. 

I N I T I A L  TENDON ECCFNTRICITY TENDON FORCE TENDON STRESS 
1.33000000 2.0000000c 162.60162544 
1~33000000 2.00000000 162.60162544 
0. 2.0000000c 162.60162544 
0. 2.00000000 162.60162544 

-1033000000 2.0000000c 162.66162544 
-1.33000000 2.00000000 162.60162544 

X O / Y  L DEFLECTION CRACK PENETRATION 
1 1 4  
2 / 4  

-0. 0. 
-0. 0. 

+ 
w 
ul 

APPLIEO LOAD = 12.49999968 
HOLOING YMT = 0. 
F I N  = 12~00000000 V I N  =1.04166666 FOUT = 12~00000000 DF = 0. 
HOLDING F = 12~00000000 
YMTIN = 0.842712300 V I N  =1.00607306 YMTOUT = 0.41170317 DYYT = 
YMTIN 0.38449612 V I N  =le00962530 YMTOUT = 0.41315681 DYMT = 
YMTIN = 0.40580956 V I N  =le00784919 YMTOUT = 0.41243005 DYMT = 
YMTIN = 0.42712300 V I N  =1.00607306 YMTOUT = 0.41170317 DYMT = 
Y H T I N  = 0.41646627 V I N  =1.00696112 YMTOUT = 0.41206664 DYMT = 
YMTIN = 0.40580955 V I N  =1.00784919 YMTOUT = 0.41243005 DYMT = 
YMTIN = 0.41113791 V I N  =1.00740516 YMTOUT = 0.41224831 DYMT = 

YMTIN = 0.41380209 V I N  =1.00718313 YMTOUT = 0.41215742 DYMT = 
YMTIN = 0.41646627 V I N  =1.00696112 YMTOUT = 0.41206664 DYMT = 

YMTIN = 0.41113790 V I N  =1.00740516 YYTOUT = 0.41224831 D Y M T  = 
Y H T I N  = 0.41246999 V I N  =1.00729415 YMTOUT = 0.41220295 DYMT = 

YMTOUT = 0.42626876 VOUT =le00614426 

-C.O1541983 FOUT = 12~00000000 VOUT =1.00735804 
0.02866068 FOUT 12~00000000 VOUT =1.00723691 
O.CO662048 FOUT = 12~00000000 VOUT =la00729749 

-0.G1541983 FOUT = 12~00000000 VOUT =le00735804 
-C.C0439963 FOUT = 12~00000000 VOUT =lo00732777 
0.00662049 FOUT = 12.00000000 VOUT =le00729749 
O.CO111040 FOUT = 12~00000000 VOUT =1.00731263 

-C.C0439963 FOUT = L2~00000000 VOUT =lo00732777 
-G.C0164467 FOUT = 12~00000000 VOUT =lo00732020 
0.00111040 FOUT = 12~00000000 VOUT =1.00731263 

-C*C0026704 FOUT = 12~00000000 VOUT =1.00731641 



F I N  = 12.12796342 V I N  =1.03067590 FOUT = 12~00000COO DF = -0012796342 YMTOUT = 0.42626870 VOUT =1.04168966 
F I N  = 12.05118537 V I N  =lo03724234 FOUT = 12~00000COO OF = -0.05118537 YMTOUT = 0.42626870 VOUT =1,04168966 
F I N  = 11.97440732 V I N  =,1.04389298 FOUT = 12.00167692 OF = 0.02726960 YMTOUT = 0.42627084 VOUT =1.04154395 
F I N  = 12.01279628 V I N  =1.04055703 FOUT = 1 2 ~ 0 0 0 0 0 0 0 0  DF = -0.01279628 YMTOUT = 0.42626876 VOUT =1.04168966 
F I N  = 11.99360168 V I N  =1.04222235 FOUT = 12.00041807 DF = 0.00681639 YMTOUT = 0.42626894 VOUT =1.04165335 

APPLIED  LOAD = 12*92654479 M P X  A P P L I E D  BEND M O M  = 12.92654479 TOTAL  PRELOAD I N  BEAM = 11.99360168 
D I F F  = -0.00681639 TENDON BENCING MOM = 0.42654495 D I F F  = 0.00027601 V = 1.04222,235 

L E F T  END ROTATION = 0.00310203 RIGHT ENC ROTATION = 0,00310203 

I N I T I A L  TENDON ECCENTRIC1 TY TENOON  FORCE  TENDON STRESS 
1.33000000 2.08026391 169.12714767 
1.330OOOOO 2.08026391 169.12714767 
0. 2.00013816 162.61285782 
0. 2.00013816 162.61285782 

-1.33000000 1.92001244 156.C9857178 
-1. 33000000 1.92001244 156.C9857178 

XD/YL  DEFLECT ION CRACK PEN€  TRATI  ON 
1 1 4  2.20981175E-02  0.001073 
2 / 4  2.94851124E-02  0.001073 

APPLIED LOAD = 13.39999986 
HOLDING YMT = 0.44216783 
F I N  = 12.43288624 V I N  =1.04222235 FOUT = 12.00043344 DF = -0,43245280 YHTOUT = 
F I N  = 12.54270732 V I N  =le03309688 FOUT = 12~00000COO DF = -0.54270732 YMTOUT = 
F I N  = 12.46034145 V I N  =la03992590 FOUT = 12.0COOOCOO OF = -0.46034145 YMTOUT = 
F I N  = 12-37797558 V I N  =le04684581  FOUT = 12.0C405C97 DF = -0.37392461 YMTOUT = 
F I N  = 12.29560971 V I N  =lo05385843 FOUT = 12eOC960815 OF = -0.28600156 YMTOUT = 
F I N  = 12.21324384 V I N  =1.06096563 FOUT = 12.01534295 DF = -0.19790089 YHTOUT = 
F I N  = 12.13087797 V I N  =1.06816934 FOUT = 12.02126992 DF = -0.10960805 YMTOUT = 
F I N  = 12.04851210 V I N  =1.07547154 FOUT = 12.02740598 DF = -0.02110612 YMTOUT = 
F I N  = 11.96614623 V I N  =1.08287427 FOUT = 12.03377652 OF = 0.06763029 YMTOUT = 
F I N  = 12.00732911 V I N  =1.07916021 FOUT = 12.03057C75 OF = 0.02324164 YMTOUT = 
F I N  = 12.04851198 V I N  =1.07547155 FObT = 12.02740598 OF = -0.02110600 YMTOUT = 
F I N  = 12.02792048 V I N  ~ 1 . 0 7 7 3 1 2 7 4  FOUT = 12.02898288 OF = 0.00106239 YMTOUT = 

0.44188172 VOUT =1.07980417 
0.44188148 VOUT =lo07984319 
0.44188154 VOUB ~ 1 . 0 7 9 8 4 3 1 9  
0.44189358 vour =1.07947777 
0.44194871 VOUT =1.07897367 
0.44205129 VOUT =le07845016 
0.44220436 VOUT =1.07790570 
0.44241136 VOUT =lo07733858 
0.44267619 VOUT =lo07674624 
0.44253635 VOUT =lo07704479 
0.44241130 VOUT =1.07733858 
0.44247198 VOUT =le07719231 

APPLIED  LOAD = 13.39999986 FAX A P P L I E D  BEN0 MCM = 13.39999986 TOTAL  PRELCAD I N  BEAM = 12.02792048 
D I F F  = -0.00106239 TENDON  BENDING MCM = 0.44216783 D I F F  = -0.00030416 V 1.07731274 

LEFT END ROTATION = 0.00321995 RIGHT ENC ROTATION = 0.00321995 

I N I T I A L  TENDCN  ECCENTRICITY TENDON FORCE TENDON STRESS 



1~33000000 
1.33000000 
0. 
0. 

-1~33000000 
-1.33000000 

XD/YL 
1 1 4  
2 / 4  

2.08801302 
2.08801302 

2.00484160 
1.92167017 

2.00484160 

1.92167017 

DEFLECTION 
2.29380986E-02 
3.06058845E-02 

169.75715637 
i'69.75715637 
162.99525070 
162.99525070 
156.23334694 
156.23334694 

CRACK PENETRATICN 
0.070182 
0.070182 

APPLIEO LOAD = 13.89999986 
HOLDING YMT = 0.45866662 
F I N  = 12.47672343 V I N  ~1.07731274 FOUT = 12.03006434 DF = -0.44665909 YMTOUT = 0.45898211 VOUT =1.11728559 
F I N  = 12-58892417 V I N  =1.06771103 FOUT = 12.02166629 OF = -0056725788 YMTOUT = 0,45869285 VOUT =1~11809017 
F I N  = 12.50477362 V I N  =.1.07489616 FOUT = 12.02792466 OF = -0.47684896 YMTOUT = 0.45890027 VOUT =le11749116 
F I N  = 12.42062306 V I N  31.08217865 FOUT = 12.03441262 OF = -0.38621044 YMTOUT = Oo45916569 VOUT =1.11686665 

w F I N  = 12.33647251 V I N  =1.08956049 FOUT = 12.04114473 OF = -0.29532778 YMTOUT = 0.45949316 VOUT =la11621502 
w 
4 F I N  = 12-25232196 V I N  =1.09704374 FOUT = 12.048L4279 OF = -0.20417917 YMTOUT = 0.45988768 VOUT =lo11553393 

F I N  = 12.16817141 V I N  =la10463049 FOUT = 12.05543184 DF = -0.11273956 YMTOUT = 0.46035433 VOUT =1.11482073 
F L N  = 12-08402085 V I N  =1.11232290 FOUT = 12.06303966 OF = -0.02098119 YMTOUT = 0.46089941 VOUT =1.11407246 
F I N  = 11.99987030 V I N  =le12012319 FOUT = 12.07099843 DF = 0.07112813 YMTOUT = 0,46152973 VOUT =la11328571 
F I N  = 12.04194558 V I N  =.1o11620942 FOUT = 12-06696320 DF = 0.02501762 YHTOUT = 0.46120340 VOUT =1.11368503 
F I N  = 12.08402085 V I N  =1.11232290 FOUT = 12.06303966 DF = -0oO2098119 YMTOUT = 0.46089941 VOUT =1.11407246 
F1.N = 32.06298316 V I N  71.11426277 FOUT = 12.06498814 DF = 0.00200498 YMTOUT 0.66104866 VOUT =1.11388017 
HOLDING- F =. 12A06298316 
YMTIN =, 0.45866662 U I N  =le11426277 YMTOUT = 0.46104866 DYMT = 0.00238204 FOUT = 12.06498814 VOUT =1.11388017 
YMTIN = 0.46691601 V I N  =le11357892 YflTOUT = 0.46071255 DYMT = -0.00620346 FOUT = 12.06426096 VOUT =lo11397518 
YMTIN = 0.46279131 V I N  =1.11392085 YHTOUT 1 0.46088058 DYHT = -0.00191073 FOUT = 12.06462431 VOUT =lo11392769 
YHTIN = 0.45866661 V I N  =1.11426277 YMTOUT = 0.46104866 DYMT = 0.00238205 FOUT = 12.06498814 VOUT =1.11388017 
YMTIN = 0.46072896 V I N  =1.11409181 YMTOUT = 0.46096456 DYMT = 0.00023560 FOOT = 12.06480622 VOUT =lo11390394 

APPLIED  LOA0 = 13.89999986 MAX APPLIED BEND MOM = 13.89999986 TOTAL PREtLOAD IN BEAM = 12.06298316 
OIFF = -0.00182307 TENDON BENDING MOM = 0.46072896 O I F F  = -0.00023560 V = 1.11409181 

LEFT END ROTATION = 0.00335453 RIGHT END-ROTATION = 0.00335453 

I N L T I A L  TENDON ECCENTRICITY TENOON FORCE  TENOON STRESS 
1.33000000 2.09746850 170.52589417 
1-33000000 2.09746850 170.52589417 
0. 2.01082101 163.48138237 
0. 2.01082101 163.48138237 

-1.33000000 1.92417353 156.43687248 
-1.33000000 1.92417353 156.43687248 



XD/YL  DEFLECTTON C R A C K  PENETRATION 
1 / 4  2 .38967717E-02   0 .147C23  
2 / 4  3 .18850246E-02   0 .147C23  

A P P L I E D   L o b 0  = 1 4 . 3 9 9 9 9 9 8 6  
HOLDING YMT = 0 , 4 7 7 3 0 1 9 3  
F I N  = 1 2 . 4 9 6 9 0 3 4 2  V I N  = 1 . 1 1 4 0 9 1 8 1  FOUT = 1 2 . 0 6 7 1 3 7 3 6  DF = - 0 . 4 2 9 7 6 6 0 6  YMTOUT = 0 . 4 7 7 5 4 6 1 0  VOUT = 1 . 1 5 3 7 4 9 5 0  
F I N  = 1 2 . 6 0 5 3 8 3 4 0  V I N  = 1 . 1 0 4 5 0 4 1 1  FOUT = 1 2 . 0 5 7 2 8 9 6 0  DF = - 0 . 5 4 8 0 9 3 8 0  YKTOUT = 0 . 4 7 6 8 3 2 0 3  VOUT =1.15475105 
F I N  = 1 2 . 5 2 4 0 2 3 2 9  V I N  = l e 1 1 1 6 7 9 3 3  FOUT = 1 2 . 0 6 4 6 2 9 3 2  DF = - 0 . 4 5 9 3 9 3 9 8  YMTOUT = 0 . 4 7 7 3 5 5 0 6  VOUT = 1 . 1 5 4 0 0 5 1 7  
F I N  = 1 2 . 4 4 2 6 6 3 1 9  V I N  z 1 . 1 1 8 9 4 8 3 9  FOUT = 1 2 . 0 7 2 2 8 2 9 1  DF = - 0 . 3 7 0 3 6 0 2 8  YMTOUT = 0 . 4 7 7 9 5 4 5 1  VOUT = 1 . 1 5 3 2 2 3 9 0  . 
F I N  5 1 2 . 3 6 1 3 0 3 0 9  V I N  = l o 1 2 6 3 1 3 1 2  FOUT = 1 2 . 0 8 0 2 8 1 3 8  DF = - 0 . 2 8 1 0 2 1 7 1  YMTOUT = 0 . 4 7 8 6 3 6 7 4  VOUT = l o 1 5 2 4 0 3 8 8  
F I N  = 1 2 . 2 7 9 9 4 2 9 9  V I N  ~ 1 . 1 3 3 7 7 5 4 4  FOUT = 1 2 . 0 8 8 6 6 0 3 6  OF = - 0 . 1 9 1 2 8 2 6 3  YMTOUT = 0 . 4 7 9 4 0 9 4 0  VOUT = 1 . 1 5 1 5 4 1 1 9  
F I N  = 1 2 . 1 9 8 5 8 2 8 9  V I N  = 1 . 1 4 1 3 3 7 3 1  FOUT = 1 2 . 0 9 7 4 6 C 8 7  DF = - 0 . 1 0 1 1 2 2 C 2  YMTOUT = 0 . 4 8 0 2 8 1 1 1  VOUT = 1 . 1 5 0 6 3 1 4 3  
F1.N = 1 2 . 1 1 7 2 2 2 7 9   V I N   = 1 . 1 4 9 0 0 0 7 3  FOUT = 1 2 . 1 0 6 7 3 C l O  OF = - 0 . 0 1 0 4 9 2 6 8  YMTOUT = 0 . 4 8 1 2 6 1 7 9  VOUT = 1 . 1 4 9 6 6 9 4 7  
HOLDING F = 1 2 . 1 1 7 2 2 2 7 9  
YMTIN = 0 . 4 7 7 3 0 1 9 3   V I N   = 1 . 1 4 9 0 0 0 7 3  YMTOUT = 0 . 4 8 1 2 6 1 7 9  D Y M T  = O.CO395985  FOUT = 1 2 . 1 0 6 7 3 0 1 0  VOUT ~ 1 . 1 4 9 6 6 9 4 7  
YMTIN = 0 . 4 8 5 5 8 8 4 2   V I N   = 1 . 1 4 8 3 1 6 8 8  YYTOUT = 0 . 4 8 0 8 8 3 8 4  DYMT = -C.C0470459 FOUT = 1 2 . 1 0 5 8 2 4 7 1  VOUT = 1 . 1 4 9 7 8 6 6 8  

CL YMTIN 9 0 . 4 8 1 4 4 5 1 8   V I N   = 1 . 1 4 8 6 5 8 8 0  YMTOUT = 0 . 4 8 1 0 7 2 7 2  DYMT = - L O O 0 3 7 2 4 5  FGUT = 1 2 , 1 0 6 2 7 7 1 1  VOUT = 1 . 1 4 9 7 2 8 1 0  

03 
I- 

A P P L I E D  LOAD = 1 4 . 3 9 9 9 9 9 8 6  M A X  A P P L I E D  R F N G  M O M  = 1 4 . 3 9 9 9 9 9 8 6  TOTAL  PRELOAD I N  BEAM = 1 2 . 1 1 7 2 2 2 7 9  
D I F F  = 0.01094568 TENCON 8ENDIrrlG MOM = 0 . 4 8 1 4 4 5 1 8  D I F F  = 0 . 0 0 0 3 7 2 4 5  V = 1 . 1 4 8 6 5 8 8 0  

LEFT END ROTATION = 0 . 0 0 3 5 0 0 8 6   R I G H T  ENC ROTATICN = 0 . 0 0 3 5 0 0 8 6  

I N I T I A L  TENOON ECCENTRICITY  TEhCON FORCE 
1.33000000 2 . 1 0 8 0 1 3 9 3  
1 .33000000 2 . 1 0 8 0 1 3 9 3  
0. 2 . 0 1 7 5 8 6 7 1  
0. 2 . 0 1 7 5 8 6 7 1  

-1 .33000000 1 . 9 2 7 1 5 9 5 2  
- 1 . 3 3 0 0 0 0 0 0  1 . 9 2 7 1 5 9 5 2  

X D / Y  L  UEFLECTTUN 
1 1 4  2 . 4 9 3 9 1 9 1 0 E - 0 2  
2 / 4  3 .32759058E-G2 

TEYDON STRESS 
1 7 1 . 3 8 3 2 4 5 4 7  
1 7 1 . 3 8 3 2 4 5 4 7  
1 6 4 . 0 3 1 4 3 8 8 3  
1 6 4 . 0 3 1 4 3 8 8 3  
1 5 6 . 6 7 5 6 3 6 0 C  
1 5 6 . 6 7 9 6 3 6 0 C  

CRACK PENETRATION 
C. 2 2 5 0 3 5  
0.22S03S 

APPLIEO  LOA0 = 1 4 . 6 9 9 9 9 9 8 6  



I IOLDING YHT = 0.49816202 
F I N  5 12.53795946 V I N  =le14865883 FOUT = L2.1C996723 OF = -0.42799222 YMTOUT = 0.49777663 VOUT =la18928671 
F I N  = 12.64314353 V I N  =1=13910261 FOUT = 12.09808C16 DF = -0.54506338 YMTCIUT = 0.49653322 VOUT =1.19055803 
F I N  = 12.56425536 V I N  =le14625478 FOUT = 12.1C691321 D F  = -0.45734215 YMTOUT = 0.49744850 VOUT =lo18961382 
F I N  12,48536718 V I N  +la15349734 FOUT = 12.11620677 DF = -0.36916041 YMTOUT = 0.49846965 VOUT =1.18861707 
F I N  = 12.40647900 VIP4 =la16083199 FOUT = 12.12601435 DF = -0.28046465 YMTOUT = 0.49960750 VOUT =lo18756187 
F I N  = 12.32759082 V I N  =le16826053 FOUT = 12.13639903 D F  = -0.19119179 YMTOUT = 0.50087529 VOUT =la18644124 
F I N  12.24870265 V I N  71.17578475 FOUT = 12.14743459 DF = -0.10126805 YMTOUT = 0.50228652 VOUT =1.18524706 
F I N  12.16981441 V I N  =1.18340652 FOUT = 12.15920901 D F  = -0.01060545 YNTOUT = 0.50386596 VOUT =la18396960 
HOLDING F = 12.16981447 
Y M T I N  = 0.49816202 V I S  =le18340652 YMTOUT = C.50386596 DYMT = 0.00570393 FOUT = 12.15920901 VOUT =1,18396960 
YMTIN 0.50652044 V I N  ~1.18271969 YMTOUT = 0.50342512 DYMT = -0.00309531 FOUT = 12.15603313 VOUT =1.18412037 
YMTIN = 0.50234122 V I N  =1.18306310 YMTOUT = 0.50364536 DYMT = O.CO130414 FOUT = 12.15862060 VOUT =1.18404503 
Y M T I N  = 0.50443082 V I N  =1.18289140 YMTOUT = 0.50353521 DYMT = -0.COO89561 I-OUT = 12.15832675 VOUT =1.18408272 

w 
w 

YMTIN = 0.50338601 V I N  ~1.18297726 YMTOUT = 0.50359023 DYMT = C.00020421 FOUT = 12.15847361 VOUT r1.18406388 
CD 

A P P L I E D  LOA0 = 14.89999986 MPX A P P L I E D  BEND MOM = 14.89999986 TOTAL  PRELOAD I N  BEAM = 12.16981447 
D I F F  = 0.01134086 TENDON BENDING MOM = 0.50338601 O I F F  -0.00020421 V = 1.18297726 

L E F T  END  ROTATION = 0.00366472 RIGHT ENC ROTATION = 0.00366472 

I N I T I A L  TENDON ECCENTRICITY TENDON  FORCE  TENDON STRESS 
1.33000000 2.12093362 172.43362808 
1~33000000 2.12093362 172.43362606 
0. 2.02627302 164.73770905 
0. 2.02627382 164.73770905 

-1.33000000 1.93161400 157.04178810 
-1.33000000 1.93161400 157.04178810 

XD/Y L DEFLECTICN CRACK PENETRATICN 
1 1 4  2.61065182E-02  0.310757 
2 1 4  3.48334488E-02  0.310757 

I 



APPLIED "LOAD 
0. 
12.92654479 
13039999906 
13.89999986 
14.39999986 
140 89999986 

CENT ER DEFL 
-0. 
0.02948511. 
0.03060588 
0.03188502 
0.03327590 
0.03483345 

THETA  LEFT 
-0. 
0.00310203 
0.00321995 
0.00335453 
C.00350086 
0-00364472 

THETA R I G H T  
-0. 
0.003f0203 
0.00321996 
0- 00335,453 
0.00360086 
0. 003664 72 

0 
N 



APPENDIX B 
SELECTION OF A MODELING MATERIAL 

Because a meaningful s ta t is t ical  treatment of t es t  specimens 
demands a l a r g e  number of r e p l i c a t i o n s ,  an inexpensive  modeling 
material was r e q u i r e d   f o r   t h i s  program. The Hydrocal gypsum 
cements seemed to   possess  a l l  t h e   b r i t t l e   c h a r a c t e r i s t i c s   d e s i r e d  
and cou ld   be   ob ta ined   i n   l a rge   quan t i t i e s  of uniform material a t  
a reasonable   cos t .  

To minimize   poss ib le   e r rors   in   the  measurement  of  mechanical 
s t r e n g t h ,   t h e   s t r o n g e s t  member of   the  gypsum family was sought. 
Test specimens i n   t h e  form  of small rec tangular  beams (1/4xl/4x4 
inches)  were cast   using  the  Hydrocal,   Ultracal  30,  and  Hydrostone 
cements. The r e su l t s   o f   t hese  tests are shown i n   F i g u r e  42, The 
Hydrostone was selected  as   the  model ing  mater ia l   because  this   group 
(batch A) of  specimens  had  the  highest  average stress. 

It waslearned  that   the  m i l l  preparation  of  Hydrostone  in- 
volved  one  ton  lots   only.   Therefore ,   to   achieve  the  desired  uni-  
formi ty   in   the   base  material i t  w a s  arranged  with  the  manufacturer 
t o  have  the  Hydrostone  bagged in  accordance  with  the  following 
procedure. 

(1) Hydrostone was processed  in   twelve  one-ton  lots .  
(2)  Each l o t  was kept  separate i n   t h e   p l a n t .  
( 3 )  Two bags  from  each  of  the l o t s  were then   se lec ted  

and  blended to form a 2400 pound l o t .  
(4)  This  process w a s  repea ted   to  form ten  such re- 

b lended   lo t s .  

Following  this  procedure,  the  shipment  of 230 bags of Hydro- 
s tone  were rebagged  and  shipped  to I I T R I .  I n   a d d i t i o n   t o   t h e  
"A" batch, two more batches "Bll and "C" were prepared  from two 

12 1 
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Figure 42 Distribution Curve of Fracture Stresses for 1/4 in. x 1 / 4  in. x 4 in. Bend 
Specimens of Three  Gypsum Cements 



d i f f e ren t   bags  drawn  from the Hydrostone  supply. The d i s t r i -  
but ion of f r a c t u r e   s t r e n g t h   f o r   t h e s e   t h r e e   b a t c h e s  are shown 
in   F igu re  4 3 .  The small v a r i a b i l i t y   o f   f r a c t u r e  stress f o r  
t hese   t h ree   ba t ches   i nd ica t e   t ha t   t he   p recau t ions   t aken   t o ' i n -  
sure   uniformity  in   the  supply of Hydrostone were adequate. 

The d a t a   i l l u s t r a t e d   i n   F i g u r e s   4 2 a n d 4 3  were obta ined   for  
materials mixed a t  maximum consistency  which w a s  d e s i r a b l e   f o r  
s t rength  purposes   but  somewhat unsat isfactory  for   molding  pur-  
poses   s ince   t he   s e t t i ng  t i m e  w a s  r e l a t i v e l y   s h o r t .   F o r   t h i s  
reason,  several   mixtures  of  Hydrostone mixed a t  maximum con- 
s is tency  but   with  the  addi t ion  of   minute   t races   of   sodate  re- 
t a r d e r  were prepared. A w e t  mix  working t i m e  of 1 - 1 / 2  hours w a s  
made poss ib l e  by the  following  Hydrostone-water  sodate  retarder 
r a t i o :  

Hydrostone  (dry): water.: r e t a r d e r  = 100:32:04.  This  formula 
w a s  used  uniformly  throughout  the  course  of a l l  i nves t iga t ions  
repor ted   here in .  

Mold preparat ions and casting  procedure  for  the  Hydrostone 
specimens. - Various component shapes were required  throughout 
the  experimental   effort .   These  shapes  ranged from s i m p l e  beams 
of square   c ross   sec t ion   to   shapes   o f  a somewhat more complicated 
geometry  involving  surfaces  curved  in two d i r e c t i o n s .  The simple 
shapes  such as the  2.5  inch x 2.5 inch x 40 inch beam and the  15  inch 
diameter by 5/8- inch  thick  .p la te   were cast  i n  one piece molds. The 
mold f o r   t h e  beams w a s  constructed as a ba t t e ry   o f   f i ve   un i t s .   See  
Figures 44  and 45 . The complicated mold conf igura t ions  as re- 
presented by t h e  "backbone"  and the   og ive   she l l  w e r e  obtained by 
f i r s t  making master molds  using wood and aluminum materials. The 
master molds were then  used  to p r e p a r e  room-temperature  vulcani- 
zing  rubber  ship  molds.  These  molds were in   tu rn   used  as the  pro- 
duct ion mold i n   c a s t i n g  the required  quant i ty   of   the   desired 
shape. See Figures 46 47 and  41 . 

1 2  3 
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F i g u r e  45 Example of S i l a s t i c  Rubber Mold f o r   C a s t i n g   P l a t e s  



Figure 46 Example of Cylinder and Backbone Specimens 



Figure 47 Ogive Shell Mold 
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The fol lowing  cast ing  process  w a s  used  to   produce  consis tent  
Hydrostone  plaster  test  specimens;  Hydrostone, water, and r e t a r d e r  
were weighed out   in   the  normal   consis tency  proport ions  of   100:32:04.  
The gypsum w a s  s l o w l y   s i f t e d   i n t o   t h e  water and allowed t o  
soak  for   about  one  minute. The mix w a s  then st irred by hand f o r  
th ree   to   f ive   minutes   fo l lowed by mechanical   mixing  for   three  to  
four  minutes.  The mechanical mixing  coalesced the smaller bubbles 
into  larger   bubbles   which  quickly came t o  the surface  of   the mix 
and d i s s i p a t e d   i n t o   t h e  a i r .  The r e s u l t i n g   c a s t i n g s  w e r e  reasonably 
bubb le   f r ee   and   f a i r ly   cons i s t en t   i n   appea rance  from ba tch   to   ba tch .  

Curing  of  Hydrostone  specimens. - In   o rde r   t o   i n su re   un i fo rmi ty  
among specimens  with  regard  to  strength,   each  specimen w a s  cured 
by dr iv ing   of f   the   excess   mois ture   in  a drying  oven. It w a s  de t e r -  
mined t h a t   i n  the case of t he   l a rge  volume beam specimens,  ten 
hours  of  exposure a t  104°F was s u f f i c i e n t  to bring  the  specimens 
to   constant   weight .  A s  an  added  margin,  no  specimen  tested was sub- 
j e c t e d   t o  less than 24 hours  of  drying time. 

1 2  9 
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